Investigation of interfacial thermal resistance of hybrid graphene/hexagonal boron nitride

Abstract

Hybrid graphene/hexagonal boron-nitride (G/h-BN) has shown significant physical properties and has been fabricated recently. Structural defects, such as Stone–Wales (SW) and vacancy, unavoidably exist in the interface of hybrid G/h-BN during the growth process. In this study, the interfacial thermal resistance (ITR) of armchair and zigzag hybrid G/h-BN with vacancy and SW defects is systematically investigated, using molecular dynamics (MD) simulations. Our results indicate that armchair edge hybrid G/h-BN possesses higher normalized ITR than the zigzag one. In addition, vacancy and SW defects introduced important influences on the ITR of hybrid G/h-BN. The ITR of hybrid G/h-BN is studied with two distinct sections. In the first section, various types of atoms, such as C, N and B, vacancy defects located throughout the interface of armchair and zigzag hybrid G/h-BN are studied. Our MD simulations results show that when the number of vacancy defect is increased, the effect of C atom vacancy defect on the normalized ITR of hybrid G/h-BN is higher than other atoms. On the other hand, the influence of B atom vacancy defect on the normalized ITR is lowest. In the second section, CC and BN types of SW defects positioned along the interface of armchair and zigzag hybrid G/h-BN are investigated. The results of this study demonstrate that CC type of SW defect shows higher normalized ITR than BN type one by increasing the SW number of defects. The obtained results in this study may open new insights for potential applications of thermal transport and control for the hybrid G/h-BN type structures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  2. Bhowmick, S., Singh, A.K., Yakobson, B.I.: Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. C 115, 9889–9893 (2011). https://doi.org/10.1021/jp200671p

    Article  Google Scholar 

  3. Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology. (2011). https://doi.org/10.1088/0957-4484/22/50/505702

    Article  Google Scholar 

  4. Chen, Y., Zou, J., Campbell, S.J., Caer, G.L.: Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004). https://doi.org/10.1063/1.1667278

    Article  Google Scholar 

  5. Chien, S.K., Yang, Y.T., Chen, C.K.: Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon 50, 421–428 (2012). https://doi.org/10.1016/j.carbon.2011.08.056

    Article  Google Scholar 

  6. Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010). https://doi.org/10.1038/nmat2711

    Article  Google Scholar 

  7. Ding, N., Chen, X., Wu, C.M.L.: Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Sci. Rep. 6, 31499 (2016a). https://doi.org/10.1038/srep31499

    Article  Google Scholar 

  8. Ding, N., Lei, Y., Chen, X., Deng, Z., Ng, S.P., Wu, C.M.L.: Structures and electronic properties of vacancies at the interface of hybrid graphene/hexagonal boron nitride sheet. Comput. Mater. Sci. 117, 172–179 (2016b). https://doi.org/10.1016/j.commatsci.2015.12.052

    Article  Google Scholar 

  9. Eshkalak, K.E., Sadeghzadeh, S., Jalaly, M.: The mechanical design of hybrid graphene/boron nitride nanotransistors: geometry and interface effects. Solid State Commun. 270, 82–86 (2018a). https://doi.org/10.1016/j.ssc.2017.12.001

    Article  Google Scholar 

  10. Eshkalak, K.E., Sadeghzadeh, S., Jalaly, M.: Mechanical properties of defective hybrid graphene-boron nitride nanosheets: a molecular dynamics study. Comput. Mater. Sci. 149, 170–181 (2018b). https://doi.org/10.1016/j.commatsci.2018.03.023

    Article  Google Scholar 

  11. Fan, Y., Hou, K., Wang, Z., He, T., Zhang, X., Zhang, H., Dong, J., Liu, X., Zhao, M.: Theoretical insights into the built-in electric field and band offsets of BN/C heterostructured zigzag nanotubes. J. Phys. D Appl. Phys. (2011a). https://doi.org/10.1088/0022-3727/44/9/095405

    Article  Google Scholar 

  12. Fan, Y., Zhao, M., Zhang, X., Wang, Z., He, T., Xia, H., Liu, X.: Manifold electronic structure transition of BNC biribbons. J. Appl. Phys. 110, 1–7 (2011b). https://doi.org/10.1063/1.3619800

    Article  Google Scholar 

  13. Gao, Y., Zhang, Y., Chen, P., Li, Y., Liu, M., Gao, T., Ma, D., Chen, Y., Cheng, Z., Qiu, X., Duan, W., Liu, Z.: Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 13, 3439–3443 (2013). https://doi.org/10.1021/nl4021123

    Article  Google Scholar 

  14. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S.: Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004). https://doi.org/10.1038/nature02817

    Article  Google Scholar 

  15. Hong, Y., Zhang, J., Zeng, X.C.: Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet. Phys. Chem. Chem. Phys. 18, 24164–24170 (2016). https://doi.org/10.1039/c6cp03933b

    Article  Google Scholar 

  16. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  Google Scholar 

  17. Hu, M., Shenogin, S., Keblinski, P.: Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene. Appl. Phys. Lett. 91, 241910 (2007). https://doi.org/10.1063/1.2824864

    Article  Google Scholar 

  18. Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B. 74, 1–9 (2006). https://doi.org/10.1103/PhysRevB.74.245413

    Article  Google Scholar 

  19. Jiang, J.W., Wang, J.S., Wang, B.S.: Minimum thermal conductance in graphene and boron nitride superlattice. Appl. Phys. Lett. 99, 97–100 (2011). https://doi.org/10.1063/1.3619832

    Article  Google Scholar 

  20. Kınacı, A., Haskins, J.B., Sevik, C., Çaǧın, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B. 86, 1–8 (2012). https://doi.org/10.1103/PhysRevB.86.115410

    Article  Google Scholar 

  21. Kurdyumov, A.V., Solozhenko, V.L., Zelyavski, W.B.: Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection. J. Appl. Crystallogr. 28, 540–545 (2018). https://doi.org/10.1107/S002188989500197X

    Article  Google Scholar 

  22. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  23. Levendorf, M.P., Kim, C.-J., Brown, L., Huang, P.Y., Havener, R.W., Muller, D.A., Park, J.: Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012). https://doi.org/10.1038/nature11408

    Article  Google Scholar 

  24. Lin, W., Moon, K.S., Wong, C.P.: A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: toward applications as thermal interface materials. Adv. Mater. 21, 2421–2424 (2009). https://doi.org/10.1002/adma.200803548

    Article  Google Scholar 

  25. Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B. 81, 205441 (2010). https://doi.org/10.1103/PhysRevB.81.205441

    Article  Google Scholar 

  26. Liu, Y., Wu, X., Zhao, Y., Zeng, X.C., Yang, J.: Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges. J. Phys. Chem. C 115, 9442–9450 (2011). https://doi.org/10.1021/jp201350e

    Article  Google Scholar 

  27. Liu, X., Zhang, G., Zhang, Y.W.: Graphene-based thermal modulators. Nano Res. 8, 2755–2762 (2015a). https://doi.org/10.1007/s12274-015-0782-2

    Article  Google Scholar 

  28. Liu, Y.S., Zhou, W.Q., Feng, J.F., Wang, X.F.: Enhanced spin thermoelectric effects in BN-embedded zigzag graphene nanoribbons. Chem. Phys. Lett. 625, 14–19 (2015b). https://doi.org/10.1016/j.cplett.2015.01.014

    Article  Google Scholar 

  29. Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride. Nano Lett. 14, 5133–5139 (2014). https://doi.org/10.1021/nl501900x

    Article  Google Scholar 

  30. Materials studio. https://accelrys.com (2018)

  31. Mortazavi, B., Ahzi, S.: Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon 63, 460–470 (2013). https://doi.org/10.1016/j.carbon.2013.07.017

    Article  Google Scholar 

  32. Mortazavi, B., Rémond, Y.: Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E. 44, 1846–1852 (2012). https://doi.org/10.1016/j.physe.2012.05.007

    Article  Google Scholar 

  33. Nakamura, J., Nitta, T., Natori, A.: Electronic and magnetic properties of BNC ribbons. Phys. Rev. B. 72, 1–5 (2005). https://doi.org/10.1103/PhysRevB.72.205429

    Article  Google Scholar 

  34. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  Google Scholar 

  35. Ng, T.Y., Yeo, J., Liu, Z.: Molecular dynamics simulation of the thermal conductivity of short strips of graphene and silicene: a comparative study. Int. J. Mech. Mater. Des. 9, 105–114 (2013). https://doi.org/10.1007/s10999-013-9215-0

    Article  Google Scholar 

  36. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984). https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  37. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  38. Ramasubramaniam, A., Naveh, D.: Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride. Phys. Rev. B. 84, 1–7 (2011). https://doi.org/10.1103/PhysRevB.84.075405

    Article  Google Scholar 

  39. Senturk, A.E., Oktem, A.S., Konukman, A.E.S.: Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons. J. Mol. Model. (2017). https://doi.org/10.1007/s00894-017-3415-8

    Article  Google Scholar 

  40. Senturk, A.E., Oktem, A.S., Konukman, A.E.S.: Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons. J. Mol. Model. 24, 0–9 (2018a). https://doi.org/10.1007/s00894-018-3581-3

    Article  Google Scholar 

  41. Senturk, A.E., Oktem, A.S., Konukman, A.E.S.: Investigation of the effects of nitrogen doping within different sites of Stone–Wales defects on the mechanical properties of graphene by using a molecular dynamics simulation method. J. Fac. Eng. Archit. Gazi Univ. (2018b). https://doi.org/10.17341/gazimmfd.416462

    Article  Google Scholar 

  42. Seol, G., Guo, J.: Bandgap opening in boron nitride confined armchair graphene nanoribbon. Appl. Phys. Lett. 98, 2009–2012 (2011). https://doi.org/10.1063/1.3571282

    Article  Google Scholar 

  43. Shi, L.: Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanoscale Microscale Thermophys. Eng. 16, 79–116 (2012). https://doi.org/10.1080/15567265.2012.667514

    Article  Google Scholar 

  44. Slotman, G.J., Fasolino, A.: Structure, stability and defects of single layer hexagonal BN in comparison to graphene. J. Phys. Condens. Matter (2013). https://doi.org/10.1088/0953-8984/25/4/045009

    Article  Google Scholar 

  45. Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010). https://doi.org/10.1016/j.carbon.2010.01.058

    Article  Google Scholar 

  46. Son, Y.-W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006). https://doi.org/10.1038/nature05180

    Article  Google Scholar 

  47. Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010). https://doi.org/10.1021/nl1022139

    Article  Google Scholar 

  48. Stewart, D.A., Savić, I., Mingo, N.: First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. Nano Lett. 9, 81–84 (2009). https://doi.org/10.1021/nl802503q

    Article  Google Scholar 

  49. Tabarraei, A.: Thermal conductivity of monolayer hexagonal boron nitride nanoribbons. Comput. Mater. Sci. 108, 66–71 (2015). https://doi.org/10.1016/j.commatsci.2015.06.006

    Article  Google Scholar 

  50. Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988a). https://doi.org/10.1103/physrevlett.61.2879

    Article  Google Scholar 

  51. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988b). https://doi.org/10.1103/physrevb.37.6991

    Article  Google Scholar 

  52. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 39, 5566–5568 (1989). https://doi.org/10.1103/PhysRevB.39.5566

    Article  Google Scholar 

  53. Williams, J.R., DiCarlo, L., Marcus, C.M.: Quantum hall effect in a graphene p-n junction. Science 317, 638–641 (2007). https://doi.org/10.1126/science.1144657

    Article  Google Scholar 

  54. Yang, K., Chen, Y., D’Agosta, R., Xie, Y., Zhong, J., Rubio, A.: Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B. 86, 1–8 (2012). https://doi.org/10.1103/PhysRevB.86.045425

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant Number: 118M726.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alp Er S. Konukman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senturk, A.E., Oktem, A.S. & Konukman, A.E.S. Investigation of interfacial thermal resistance of hybrid graphene/hexagonal boron nitride. Int J Mech Mater Des 15, 727–737 (2019). https://doi.org/10.1007/s10999-018-09440-y

Download citation

Keywords

  • Hybrid graphene/hexagonal boron-nitride
  • Molecular dynamics
  • Interfacial thermal resistance
  • Vacancy defect
  • Stone–Wales defect