A parametric study on thermo-mechanical vibration of axially functionally graded material pipe conveying fluid

Abstract

In this article, we study the thermo-elastic vibration of axially functionally graded material (FGM) pipe conveying fluid considering temperature changes. The governing equation based on Euler–Bernoulli beam theory is solved by differential quadrature method. The FGM properties are defined by the property ratios and the volume fraction functions. Power volume fraction function and exponent volume fraction function are compared. We also use sigmoid volume fraction functions so that the exclusive influence of function distribution can be isolated from that of total material proportions. The property ratios’ effects of elasticity and thermo-elasticity gradient are also discussed. Based on the numerical results of first-order dimensionless frequencies and critical flow velocities, concerning thermo-elasticity gradient can theoretically change the stability of the pipe. And the influences of the pure distribution on the first-order critical flow velocities are much smaller than that of the varying total proportions of the component materials. These conclusions will hopefully be used as reference for FGM pipe designing and fabricating.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. An, C., Su, J.: Dynamic behavior of axially functionally graded pipes conveying fluid. Math. Prob. Eng. 2017, 6789634 (2017). https://doi.org/10.1155/2017/6789634

    MathSciNet  Article  Google Scholar 

  2. Ansari, R., Gholami, R., Norouzzadeh, A.: Size-dependent thermo-mechanical vibration and instability of conveying fluid functionally graded nanoshells based on Mindlin’s strain gradient theory. Thin-Walled Struct. 105, 172–184 (2016)

    Article  Google Scholar 

  3. Arani, A.G., Roudbari, M.A., Amir, S.: Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations. Appl. Math. Model. 40(3), 2025–2038 (2016)

    MathSciNet  Article  Google Scholar 

  4. Askari, H., Esmailzadeh, E.: Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations. Compos. Part B Eng. 113, 31–43 (2017)

    Article  Google Scholar 

  5. Bahaadini, R., Hosseini, M.: Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comput. Mater. Sci. 114, 151–159 (2016)

    Article  Google Scholar 

  6. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(1–6), 195–216 (2007)

    Article  Google Scholar 

  7. Bruant, I., Proslier, L.: Optimal location of piezoelectric actuators for active vibration control of thin axially functionally graded beams. Int. J. Mech. Mater. Des. 12(2), 173–192 (2016)

    Article  Google Scholar 

  8. Chi, S.-H., Chung, Y.-L.: Mechanical behavior of functionally graded material plates under transverse load—part I: analysis. Int. J. Solids Struct. 43(13), 3657–3674 (2006)

    Article  Google Scholar 

  9. Deng, J., Liu, Y., Zhang, Z., Liu, W.: Stability analysis of multi-span viscoelastic functionally graded material pipes conveying fluid using a hybrid method. Eur. J. Mech. A/Solids 65, 257–270 (2017)

    MathSciNet  Article  Google Scholar 

  10. Eftekhari, M., Hosseini, M.: On the stability of spinning functionally graded cantilevered pipes subjected to fluid-thermomechanical loading. Int. J. Struct. Stab. Dyn. 16(9), 26 (2016)

    MathSciNet  Article  Google Scholar 

  11. Filiz, S., Aydogdu, M.: Wave propagation analysis of embedded (coupled) functionally graded nanotubes conveying fluid. Compos. Struct. 132, 1260–1273 (2015)

    Article  Google Scholar 

  12. Ghazavi, M.R., Molki, H., Beigloo, A.A.: Nonlinear analysis of the micro/nanotube conveying fluid based on second strain gradient theory. Appl. Math. Model. 60, 77–93 (2018)

    MathSciNet  Article  Google Scholar 

  13. Gupta, A., Talha, M.: Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1–14 (2015)

    Article  Google Scholar 

  14. Hassen, A.A., Tounsi, A., Bernard, F.: Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int. J. Mech. Mater. Des. 13(1), 71–84 (2017)

    Article  Google Scholar 

  15. Ibrahim, R.A.: Mechanics of pipes conveying fluids-part II: applications and fluidelastic problems. J. Press. Vessel Technol. Trans. ASME 133(2), 024001 (2011)

    Article  Google Scholar 

  16. Jha, D.K., Kant, T., Singh, R.K.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013)

    Article  Google Scholar 

  17. Kiani, K.: Free vibration of in-plane-aligned membranes of single-walled carbon nanotubes in the presence of in-plane-unidirectional magnetic fields. J. Vib. Control 22(17), 3736–3766 (2016)

    MathSciNet  Article  Google Scholar 

  18. Li, L., Hu, Y.J.: Critical flow velocity of fluid-conveying magneto-electro-elastic pipe resting on an elastic foundation. Int. J. Mech. Sci. 119, 273–282 (2016)

    Article  Google Scholar 

  19. Li, B.H., Gao, H.S., Liu, Y.S., Yue, Z.F.: Transient response analysis of multi-span pipe conveying fluid. J. Vib. Control 19(14), 2164–2176 (2013)

    MathSciNet  Article  Google Scholar 

  20. Liu, H.C., Liu, Y.S., Dai, J.Y., Cheng, Q.: An improved model of carbon nanotube conveying flow by considering comprehensive effects of Knudsen number. Microfluid. Nanofluidics 22(6), 13 (2018)

    Article  Google Scholar 

  21. Mnassri, I., El Baroudi, A.: Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid. Acta Mech. Solida Sin. 30(4), 435–444 (2017)

    Article  Google Scholar 

  22. Nemat-Alla, M.: Reduction of thermal stresses by developing two-dimensional functionally graded materials. Int. J. Solids Struct. 40(26), 7339–7356 (2003)

    Article  Google Scholar 

  23. Ni, Q., Zhang, Z.L., Wang, L., Qian, Q., Tang, M.: Nonlinear dynamics and synchronization of two coupled pipes conveying pulsating fluid. Acta Mech. Solida Sin. 27(2), 162–171 (2014)

    Article  Google Scholar 

  24. Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic press, Cambridge (1998)

    Google Scholar 

  25. Païdoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7(2), 137–204 (1993)

    Article  Google Scholar 

  26. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21(6), 593–626 (1998)

    Article  Google Scholar 

  27. Setoodeh, A.R., Afrahim, S.: Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos. Struct. 116, 128–135 (2014)

    Article  Google Scholar 

  28. Shen, H.J., Wen, J.H., Yu, D.L., Wen, X.S.: Stability of clamped-clamped periodic functionally graded material shells conveying fluid. J. Vib. Control 21(15), 3034–3046 (2015)

    MathSciNet  Article  Google Scholar 

  29. Sheng, G.G., Wang, X.: Nonlinear response of fluid-conveying functionally graded cylindrical shells subjected to mechanical and thermal loading conditions. Compos. Struct. 168, 675–684 (2017)

    Article  Google Scholar 

  30. Swaminathan, K., Sangeetha, D.M.: Thermal analysis of FGM plates—a critical review of various modeling techniques and solution methods. Compos. Struct. 160, 43–60 (2017)

    Article  Google Scholar 

  31. Tang, Y., Yang, T.Z., Fang, B.: Fractional dynamics of fluid-conveying pipes made of polymer-like materials. Acta Mech. Solida Sin. 31(2), 243–258 (2018)

    Article  Google Scholar 

  32. Wang, L.: Flutter instability of supported pipes conveying fluid subjected to distributed follower forces. Acta Mech. Solida Sin. 25(1), 46–52 (2012)

    Article  Google Scholar 

  33. Wang YQ, Zu JW (2018) Vibration characteristics of moving sigmoid functionally graded plates containing porosities. Int. J. Mech. Mater. Des. 14(4), 473–489

    Article  Google Scholar 

  34. Wang, L., Dai, H.L., Qian, Q.: Dynamics of simply supported fluid-conveying pipes with geometric imperfections. J. Fluids Struct. 29, 97–106 (2012)

    Article  Google Scholar 

  35. Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration and instability of carbon nanotubes conveying fluid. Compos. Sci. Technol. 65(9), 1326–1336 (2005)

    Article  Google Scholar 

  36. Zhang, Y.W., Zhou, L., Fang, B., Yang, T.Z.: Quantum effects on thermal vibration of single-walled carbon nanotubes conveying fluid. Acta Mech. Solida Sin. 30(5), 550–556 (2017)

    Article  Google Scholar 

  37. Zhen, Y.X., Fang, B., Tang, Y.: Thermal-mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium. Physica E Low Dimens. Syst. Nanostruct. 44(2), 379–385 (2011)

    Article  Google Scholar 

  38. Zhou, X.W., Dai, H.L., Wang, L.: Dynamics of axially functionally graded cantilevered pipes conveying fluid. Compos. Struct. 190, 112–118 (2018)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongshou Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Liu, Y., Liu, H. et al. A parametric study on thermo-mechanical vibration of axially functionally graded material pipe conveying fluid. Int J Mech Mater Des 15, 715–726 (2019). https://doi.org/10.1007/s10999-018-09439-5

Download citation

Keywords

  • DQM
  • Functionally graded material
  • Pipe conveying fluid
  • Stability
  • Volume fraction function