Micromechanical modeling of particulate-filled composites using micro-CT to create representative volume elements

Abstract

A method based on X-ray micro-CT was introduced to create realistic representative volume elements (RVE) for particulate-filled composite materials. The method is applicable to most composite systems, and can be utilized to improve artificial computer algorithms by presenting the number, the dimension, and the orientation of filler particles inside the RVEs. Three different shapes of glass fillers (spherical, flake, and fiber) and filler mass fractions (5%, 10%, and 15%) were introduced to epoxy resin to demonstrate the capability of micro-CT to create RVEs. Two kind of RVEs were created; voxel-based and geometry-based. Voxel-based RVEs were created from binary segmentation of images taken from micro-CT. Geometry-based RVEs were created after reconstruction of voxel-based RVEs to eliminate the stepped-like appearance of non-orthogonal interfaces. These RVE’s were then used in the finite element analysis to find the effective mechanical properties such as Young’s modulus, shear modulus, Poisson’s ratio of the samples. In order to assess the numerical findings, compression tests were performed according to ASTM D695. Also, spherical fillers were distributed inside a volume artificially using an algorithm and RVEs were created. The number and the dimension of the spherical fillers were supplied from X-ray micro-CT and optical microscopy, respectively. The elastic moduli found using RVEs created from the algorithm is close to the elastic moduli found using RVEs created from X-ray micro-CT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. ABAQUS 6.12 Online documentation, Dassault Systemes, Providence, RI, USA (2012)

  2. ASTM. D695.36782. Standard test method for compressive properties of rigid plastics (2015)

  3. Badel, P., Vidal-Salle, E., Maire, E., Boisse, P.: Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Compos. Sci. Technol. 68(12), 2433–2440 (2008)

    Article  Google Scholar 

  4. Beran, M.J., Molyneux, J.: Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media. Q. Appl. Math. 24, 107–118 (1966)

    Article  Google Scholar 

  5. Bernasconi, A., Cosmi, F., Hine, P.J.: Analysis of fibre orientation distribution in short fibre reinforced polymers: a comparison between optical and tomographic methods. Compos. Sci. Technol. 72, 2002–2008 (2012)

    Article  Google Scholar 

  6. Blacklock, M., Bale, H., Begley, M., Cox, B.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model. J. Mech. Phys. Solids 60, 451–470 (2012)

    Article  Google Scholar 

  7. Bohm, H.J., Eckschlager, A., Han, W.: Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput. Mater. Sci. 25(1–2), 42–53 (2002)

    Article  Google Scholar 

  8. Chauhan, S.R., Thakur, S.: Effects of particle size, particle loading and sliding distance on the friction and wear properties of cenosphere particulate filled vinylester composites. Mater. Des. 51, 398–408 (2013)

    Article  Google Scholar 

  9. Cinar, K., Guven, I.: Micro-computed tomography as a tool to investigate the deformation behavior of particulate-filled composite materials. J. Eng. Mater. Technol. 140(2), 1–17 (2018)

    Article  Google Scholar 

  10. Djebara, Y., El Moumen, A., Kanit, T., Madani, S., Imad, A.: Modeling of the effect of particles size, particles distribution and particles number on mechanical properties of polymer–clay nanocomposites: numerical homogenization versus experimental results. Compos. B Eng. 86, 135–142 (2016)

    Article  Google Scholar 

  11. Drach, B., Tsukrov, I., Trofimov, A.: Comparison of full field and single pore approaches to homogenization of linearly elastic materials with pores of regular and irregular shapes. Int. J. Solids Struct. 96, 48–63 (2016)

    Article  Google Scholar 

  12. El Moumen, A., Kanit, T., Imad, A., El Minor, H.: Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: statistical and numerical approaches. Mech. Mater. 83, 1–16 (2015)

    Article  Google Scholar 

  13. Halphin, J.C., Tsai, S.W.: Environmental factors in composite materials. AFML TR 67-423, Air Force Materials Laboratory Report (1967)

  14. Harraez, M., Gonzales, C., Lopes, C.S., Guzman de Villoria, R., Lorca, J., Varela, T., Sanchez, J.: Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: an approach to virtual materials design. Compos. Part A Appl. Sci. Manuf. 91(2), 484–492 (2016)

    Article  Google Scholar 

  15. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    MathSciNet  Article  Google Scholar 

  16. Hbaieb, K., Wang, Q.X., Chia, Y.H.J., Cotterell, B.: Modelling stiffness of polymer/clay nanocomposites. Polymer 48(3), 901–909 (2007)

    Article  Google Scholar 

  17. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  Google Scholar 

  18. Kari, S., Berger, H., Rodriguez-Ramos, R., Gabbert, U.: Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles. Compos. Struct. 77, 223–231 (2007a)

    Article  Google Scholar 

  19. Kari, S., Berger, H., Gabbert, U.: Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput. Mater. Sci. 39(1), 198–204 (2007b)

    Article  Google Scholar 

  20. Kushvaha, V., Tippur, H.: Effect of filler shape, volume fraction and loading rate on dynamic fracture behavior of glass-filled epoxy. Compos. B Eng. 64, 126–137 (2014)

    Article  Google Scholar 

  21. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Mater. 21(5), 571–574 (1973)

    Article  Google Scholar 

  22. Mortazavi, B., Baniassadi, M., Bardon, J., Ahzi, S.: Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods. Compos. B Eng. 45(1), 1117–1125 (2013)

    Article  Google Scholar 

  23. Naouar, N., Vidal-Salle, E., Schneider, J., Maire, E., Boisse, P.: 3D composite reinforcement meso F.E. analyses based on X-ray computed tomography. Compos. Struct. 132, 1094–1104 (2015)

    Article  Google Scholar 

  24. Panda, S.P., Panda, S.: Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 11(1), 41–57 (2015)

    Article  Google Scholar 

  25. Qi, L., Tian, W., Zhou, J.: Numerical evaluation of effective elastic properties of composites reinforced by randomly distributed short fibers with certain aspect ratio. Compos. Struct. 131, 843–851 (2015)

    Article  Google Scholar 

  26. Rask, M., Madsen, B., Sorensen, B.F., Fife, J.L., Martyniuk, K., Lauridsen, E.M.: In situ observations of microscale damage evolution in unidirectional natural fibre composites. Compos. Part A Appl. Sci. Manuf. 43(10), 1639–1649 (2012)

    Article  Google Scholar 

  27. Reuss, A.: Berechnung der fliegrenze von mischkristallen auf grund der plastizittsbedingung fr einkristalle. J. Appl. Math. Mech. 9(1), 49–58 (1929)

    MATH  Google Scholar 

  28. Sab, K.: On the homogenization and the simulation of random materials. Eur. J. Mech. Solids. 11, 585–607 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Shedbale, A.S., Singh, I.V., Mishra, B.K.: Heterogeneous and homogenized models for predicting the indentation response of particle reinforced metal matrix composites. Int. J. Mech. Mater. Des. 13, 531–552 (2017)

    Article  Google Scholar 

  30. Shen, H., Nutt, S., Hull, D.: Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging. Compos. Sci. Technol. 64, 2113–2120 (2004)

    Article  Google Scholar 

  31. Sheng, N., Boyce, M.C., Parks, D.M., Rutledge, G.C., Abes, J.I., Cohen, R.E.: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45(2), 487–506 (2004)

    Article  Google Scholar 

  32. Straumit, I., Lomov, S.V., Wevers, M.: Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Compos. Part A-Appl. Sci. Manuf. 69, 150–158 (2015)

    Article  Google Scholar 

  33. Sun, T.C., Vaidya, S.R.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56, 171–179 (1996)

    Article  Google Scholar 

  34. Tebmann, M., Mohr, S., Gayetskyy, S., Habler, U., Hanke, R., Greiner, G.: Automatic determination of fiber-length distribution in composite material using 3D CT data. EURASIP J. Adv. Signal Process. (2010). https://doi.org/10.1155/2010/545030

    Article  Google Scholar 

  35. Tian, W., Qi, L., Su, C., Zhou, J., Jing, Z.: Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: effect of fiber orientation. Compos. Struct. 152, 408–417 (2016)

    Article  Google Scholar 

  36. Tian, W., Qi, L., Zhou, J., Liang, J., Ma, Y.: Representative volume element for composite reinforced by spatially randomly distributed discontinuous fibers and its applications. Compos. Struct. 131, 366–373 (2015)

    Article  Google Scholar 

  37. Voight, W.: Ueber die beziehung zwischen den beiden elasticitatsconstanten isotroper korper. Ann. Phys. 274, 573–587 (1889)

    Article  Google Scholar 

  38. Xu, L.M., Fan, H., Sze, K.Y., Li, C.: Elastic property prediction by finite element analysis with random distribution of materials for heterogeneous solids. Int. J. Mech. Mater. Des. 3(4), 319–327 (2006)

    Article  Google Scholar 

  39. Zhang, M., Jivkov, A.P.: Micromechanical modelling of deformation and fracture of hydrating cement paste using X-ray computed tomography characterization. Compos. B Eng. 88, 64–72 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This paper is based on the work supported partially by the VCU Presidential Research Quest Fund (Grant No. 295082).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Guven.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guven, I., Cinar, K. Micromechanical modeling of particulate-filled composites using micro-CT to create representative volume elements. Int J Mech Mater Des 15, 695–714 (2019). https://doi.org/10.1007/s10999-018-09438-6

Download citation

Keywords

  • Polymer matrix composites
  • Micromechanics
  • X-ray computed tomography
  • Particulate reinforced composites
  • Finite element analysis (FEA)