Novel method for analyzing the behavior of composite beams with non-smooth interfaces

Abstract

An almost exact solution is derived for the forced vibration of a composite beam with periodically varying non-smooth interface through a moderate weak-form formulation. The material property of a non-uniform beam is characterized by its flexural rigidity function R(x). In the novel method, R(x) is relaxed to be an integrable function rather than a \({\mathcal{C}}^2\) smooth function in the usual approach. The R(x)-orthogonal bases in the linear span of all boundary functions are derived such that the second-order derivatives of the bases elements are orthogonal with respect to the weight function R(x). When the deflection of the beam is expressed in terms of the bases, the expansion coefficients can be determined exactly in closed form owing to the R(x)-orthogonality of the bases. The solution obtained is almost exact, since its accuracy can be up to the order \(10^{-15}\). This powerful method is used to analyze the forced vibration behavior of composite beams with three different periodic interfaces.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abu-Hilal, M.: Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. J. Sound Vib. 267, 191–207 (2003)

    Article  Google Scholar 

  2. Balduzzi, G., Aminbaghai, M., Auricchio, F., Fussl, J.: Planar Timoshenko-like model for multilayer non-prismatic beams. Int. J. Mech. Mater. Des. 14, 51–70 (2018)

    Article  Google Scholar 

  3. Banerjee, J.R., Su, H., Jackson, D.R.: Free vibration of rotating tapered beams using the dynamic stiffness method. J. Sound Vib. 298, 1034–1054 (2006)

    Article  Google Scholar 

  4. Bruant, I., Proslier, L.: Optimal location of piezoelectric actuators for active vibration control of thin axially functionally graded beams. Int. J. Mech. Mater. Des. 12, 173–192 (2016)

    Article  Google Scholar 

  5. Datta, A.K., Sil, S.N.: An analytical of free undamped vibration of beams of varying cross-section. Comput. Struct. 59, 479–483 (1996)

    Article  Google Scholar 

  6. Dong, X.Y., Bai, Z.B., Zhang, S.Q.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 5, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Huang, Y., Li, X.F.: A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J. Sound Vib. 329, 2291303 (2010)

    Google Scholar 

  8. Li, F.S.: Global existence and uniqueness of weak solution for nonlinear viscoelastic full Marguerre–von Karman shallow shell equations. Acta Math. Sin. 25, 2133–2156 (2009)

    Article  Google Scholar 

  9. Li, H., Balachandran, B.: Buckling and free oscillations of composite microresonators. J. Micromech. Syst. 15, 42–51 (2006)

    Article  Google Scholar 

  10. Li, B., Liu, C.-S.: A new method for the deflection analysis of composite beams with periodically varying interfaces. Z. Angew. Math. Mech. 98, 718–726 (2018)

    MathSciNet  Article  Google Scholar 

  11. Li, B., Dong, L., Zhu, L., Chen, X.: On the natural frequency and vibration mode of composite beam with non-uniform cross-section. J. Vibroeng. 17, 2491–2502 (2015)

    Google Scholar 

  12. Li, B., Liu, C.-S., Zhu, L.: Vibration analysis of composite beams with sinusoidal periodically varying interfaces. Z. Nat. A 73, 57–67 (2018a)

    Google Scholar 

  13. Li, B., Liu, C.-S., Zhu, L.: A general algorithm on the natural vibration analysis of composite beams with arbitrary complex interfaces. Z. Nat. A 73, 995–1004 (2018b)

    Google Scholar 

  14. Liu, C.-S., Li, B.: A fast new algorithm for solving a nonlinear beam equation under nonlinear boundary conditions. Z. Nat. A 72, 397–400 (2017a)

    Google Scholar 

  15. Liu, C.-S., Li, B.: An upper bound theory to approximate the natural frequencies and parameters identification of composite beams. Compos. Struct. 171, 131–144 (2017b)

    Article  Google Scholar 

  16. Myint-U, T., Debnath, L.: Partial Differential Equations for Scientists and Engineers, 3rd edn. Prentice-Hall, Englewood Cliffs (2007)

    Google Scholar 

  17. Raja, S., Venkata, R.K., Gowda, M.T.: Improved finite element modeling of piezoelectric beam with edge debonded actuator for actuation authority and vibration behaviour. Int. J. Mech. Mater. Des. 13, 25–41 (2017)

    Article  Google Scholar 

  18. Sahoo, S.R., Ray, M.C.: Analysis of smart damping of laminated composite beams using mesh free method. Int. J. Mech. Mater. Des. 14, 359–374 (2018)

    Article  Google Scholar 

  19. Sears, A., Batra, R.: Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys. Rev. B 69, 235406 (2004)

    Article  Google Scholar 

  20. Shaat, M., Abdelkefi, A.: Buckling characteristics of nanocrystalline nano-beams. Int. J. Mech. Mater. Des. 14, 71–89 (2018)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Botong Li.

Appendices

Appendix 1

In this appendix we derive Eq. (11). Multiplying Eq. (3) by \(\phi (x)\) and integrating the resultant from \(x=0\) to \(x=L\), yield

$$\begin{aligned}&\int _0^L [R(x)y''(x)]''\phi _j(x)dx\nonumber \\&=\int _0^L q(x)\phi _j(x)dx. \end{aligned}$$
(24)

Integrating the integral term in the left-hand side by parts two times and using Eqs. (8) and (12), we have

$$\begin{aligned}&\int _0^L [R(x)y''(x)]''\phi _j(x)dx\nonumber \\&\quad =\left. [R(x)y''(x)]'\phi _j(x)\right| _0^L\nonumber \\&\qquad -\,\int _0^L [R(x)y''(x)]'\phi _j'(x)dx \nonumber \\&\quad =-\int _0^L [R(x)y''(x)]'\phi _j'(x)dx\,{\text {due}}\;{\text {to}}~~\nonumber \\&\qquad \phi _j(0)=\phi _j(L)=0 \nonumber \\&\quad =-\left. R(x)y''(x)\phi _j'(x)\right| _0^L\nonumber \\&\qquad +\,\int _0^L R(x)y''(x)\phi _j''(x)dx \nonumber \\&\quad =\int _0^L R(x)y''(x)\phi _j''(x)dx\nonumber \\&\qquad {\text {due}}\;{\text {to}}\,y''(0)=y''(L)=0. \end{aligned}$$
(25)

Inserting it into Eq. (24) we can derive Eq. (11) for the simple beam equation.

For the clamped–clamped beam we have

$$\begin{aligned}&\int _0^L [R(x)y''(x)]''\phi _j(x)dx\nonumber \\&\quad =\left. [R(x)y''(x)]'\phi _j(x)\right| _0^L\nonumber \\&\qquad -\,\int _0^L [R(x)y''(x)]'\phi _j'(x)dx \nonumber \\&\quad =-\int _0^L [R(x)y''(x)]'\phi _j'(x)dx~~\nonumber \\&\qquad {\text {due}}\;{\text {to}}\;\phi _j(0)=\phi _j(L)=0 \nonumber \\&\quad =-\left. R(x)y''(x)\phi _j'(x)\right| _0^L\nonumber \\&\qquad +\,\int _0^L R(x)y''(x)\phi _j''(x)dx \nonumber \\&\quad =\int _0^L R(x)y''(x)\phi _j''(x)dx~~\nonumber \\&\qquad {\text {due}}\;{\text {to}}\;\phi _j'(0)=\phi _j'(L)=0. \end{aligned}$$
(26)

Inserting it into Eq. (24) we can derive Eq. (11) for the clamped–clamped beam equation.

Similarly, for the cantilevered beam we have

$$\begin{aligned}&\int _0^L [R(x)y''(x)]''\phi _j(x)dx\nonumber \\&\quad =\left. [R(x)y''(x)]'\phi _j(x)\right| _0^L\nonumber \\&\qquad -\,\int _0^L [R(x)y''(x)]'\phi _j'(x)dx \nonumber \\&\quad =-\int _0^L [R(x)y''(x)]'\phi _j'(x)dx\nonumber \\&\qquad {\text {due}}\;{\text {to}}\;\phi _j(0)=0,~ y''(L)=0,~y'''(L)=0 \nonumber \\&\quad =-\left. R(x)y''(x)\phi _j'(x)\right| _0^L\nonumber \\&\qquad +\,\int _0^L R(x)y''(x)\phi _j''(x)dx \nonumber \\&\quad =\int _0^L R(x)y''(x)\phi _j''(x)dx~~\nonumber \\&\qquad {\text {due}}\;{\text {to}}\;\phi _j'(0)=0,~y''(L)=0. \end{aligned}$$
(27)

Inserting it into Eq. (24) we can derive Eq. (11) for the cantilevered beam equation.

Appendix 2

In this appendix we derive Eqs. (15)–(17). Let

$$\begin{aligned} B_j(x)=x^{j+3}+ax^{j+2}+bx^{j+1},~~j \ge 2, \end{aligned}$$
(28)

be a boundary function for the simple beam, where a and b are to be determined such that \(B_j(x)\) satisfies all the boundary conditions in Eq. (8). It is obvious that \(B_j(x)\) satisfies \(B_j(0)=0\) and \(B_j''(0)=0\) due to \(j\ge 2\). To satisfy \(B_j(L)=0\) and \(B_j''(L)=0\) we can derive

$$\begin{aligned}&L^{j+3}+aL^{j+2}+bL^{j+1}=0, \end{aligned}$$
(29)
$$\begin{aligned}&(j+3)(j+2)L^{j+1}+a(j+2)(j+1)L^j\nonumber \\&\quad +\,b(j+1)jL^{j-1}=0, \end{aligned}$$
(30)

which can be solved to

$$\begin{aligned} a=-\frac{2j+3}{j+1}L,~~b=\frac{j+2}{j+1}L^2. \end{aligned}$$
(31)

Inserting a and b into Eq. (28) we can derive Eq. (15).

Let

$$\begin{aligned} B_j(x)=x^{j+3}+ax^{j+2}+bx^{j+1},~~j \ge 1, \end{aligned}$$
(32)

be a boundary function for the clamped–clamped beam. It is obvious that \(B_j(x)\) satisfies \(B_j(0)=0\) and \(B_j'(0)=0\) due to \(j\ge 1\). To satisfy \(B_j(L)=0\) and \(B_j'(L)=0\) we can derive

$$\begin{aligned}&L^{j+3}+aL^{j+2}+bL^{j+1}=0, \end{aligned}$$
(33)
$$\begin{aligned}&(j+3)L^{j+2}+a(j+2)L^{j+1}\nonumber \\&\quad +\,b(j+1)L^j=0, \end{aligned}$$
(34)

which can be solved to

$$\begin{aligned} a=-2L,~~b=L^2. \end{aligned}$$
(35)

Inserting a and b into Eq. (32) we can derive Eq. (16).

Finally, let

$$\begin{aligned} B_j(x)=x^{j+3}+ax^{j+2}+bx^{j+1},~~j \ge 1, \end{aligned}$$
(36)

be a boundary function for the cantilevered beam. It is obvious that \(B_j(x)\) satisfies \(B_j(0)=0\) and \(B_j'(0)=0\) due to \(j\ge 1\). To satisfy \(B_j''(L)=0\) and \(B_j'''(L)=0\) we can derive

$$\begin{aligned}&(j+3)(j+2)L^{j+1}+a(j+2)(j+1)L^j\nonumber \\&\quad +\,b(j+1)jL^{j-1}=0, \end{aligned}$$
(37)
$$\begin{aligned}&(j+3)(j+2)(j+1)L^j+a(j+2)(j+1)jL^{j-1}\nonumber \\&\quad +\,b(j+1)j(j-1)L^{j-2}=0, \end{aligned}$$
(38)

which can be solved to

$$\begin{aligned} a & = -\frac{2j+3}{j+1}L,\nonumber \\ b & = \frac{(j+2)(j+3)}{j(j+1)}L^2. \end{aligned}$$
(39)

Inserting a and b into Eq. (36) we can derive Eq. (17).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, B. & Kuo, C. Novel method for analyzing the behavior of composite beams with non-smooth interfaces. Int J Mech Mater Des 15, 671–679 (2019). https://doi.org/10.1007/s10999-018-09436-8

Download citation

Keywords

  • Composite beams
  • Moderate weak-form formulation
  • Forced vibration
  • Non-smooth interface