Skip to main content
Log in

Prediction of the dynamic equivalent stiffness for a rubber bushing using the finite element method and empirical modeling

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A hybrid method using an approximation that is based on the finite element analysis and empirical modeling is proposed to analyze the dynamic characteristics of a rubber bushing. The hyperelastic–viscoplastic model and an overlay method are used to obtain the hysteresis of the rubber bushing in the finite element analysis. A spring, fractional derivatives, and frictional components are used in the empirical model to obtain the dynamic stiffness in wide ranges of the excitation frequencies and amplitudes. The parameters of the proposed empirical model are determined using the hysteresis curves that were obtained from the finite element analysis. The dynamic stiffness of the rubber bushing in the wide ranges of the frequencies and amplitudes was predicted using the proposed hybrid method and was validated using lower arm bushing experiments. The proposed hybrid method can predict the dynamic stiffness of a rubber bushing without the performance of iterative experiments and the incurrence of a high computational cost, making it applicable to analyses of full-size vehicles with numerous rubber bushings under various vibrational loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bagley, R.L., TORVIK, J.: Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  • Banks, H.T., Hu, S., Kenz, Z.R.: A brief review of elasticity and viscoelasticity for solids. Adv. Appl. Math. Mech. 3(01), 1–51 (2011)

    Article  MathSciNet  Google Scholar 

  • Berg, M.: A non-linear rubber spring model for rail vehicle dynamics analysis. Veh. Syst. Dyn. 30(3–4), 197–212 (1998)

    Article  Google Scholar 

  • Cao, L., Sadeghi, F., Stacke, L.-E.: An explicit finite-element model to investigate the effects of elastomeric bushing on bearing dynamics. J. Tribol. 138(3), 031104 (2016)

    Article  Google Scholar 

  • Coveney, V., Johnson, D., Turner, D.: A triboelastic model for the cyclic mechanical behavior of filled vulcanizates. Rubber Chem. Technol. 68(4), 660–670 (1995)

    Article  Google Scholar 

  • D5992-96, A.: Standard guide for dynamic testing of vulcanized rubber and rubber-like materials using vibratory methods. (1996)

  • Dean, G., Duncan, J., Johnson, A.: Determination of non-linear dynamic properties of carbon-filled rubbers. Polym. Test. 4(2–4), 225–249 (1984)

    Article  Google Scholar 

  • Dzierzek, S.: Experiment-based modeling of cylindrical rubber bushings for the simulation of wheel suspension dynamic behavior. In: SAE Technical Paper, (2000)

  • Findley, W.N., Davis, F.A.: Creep and relaxation of nonlinear viscoelastic materials. Dover Publications, Mineola (1989)

    Google Scholar 

  • Fletcher, W., Gent, A.: Nonlinearity in the dynamic properties of vulcanized rubber compounds. Rubber Chem. Technol. 27(1), 209–222 (1954)

    Article  Google Scholar 

  • García Tárrago, M.J., Kari, L., Vinolas, J., Gil-Negrete, N.: Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings. Polym. Test. 26(5), 629–638 (2007a)

    Article  Google Scholar 

  • García Tárrago, M.J., Kari, L., Viñolas, J., Gil-Negrete, N.: Torsion stiffness of a rubber bushing: a simple engineering design formula including the amplitude dependence. J. Strain Anal. Eng. Des. 42(1), 13–21 (2007b)

    Article  Google Scholar 

  • García Tárrago, M.J., Vinolas, J., Kari, L.: Axial stiffness of carbon black filled rubber bushings: frequency and amplitude dependence. KGK. Kautschuk, Gummi Kunststoffe 60(1–2), 43–48 (2007c)

    Google Scholar 

  • Govindjee, S., Simo, J.C.: Mullins’ effect and the strain amplitude dependence of the storage modulus. Int. J. Solids Struct. 29(14–15), 1737–1751 (1992)

    Article  MATH  Google Scholar 

  • Gracia, L., Liarte, E., Pelegay, J., Calvo, B.: Finite element simulation of the hysteretic behaviour of an industrial rubber. Application to design of rubber components. Finite Elem. Anal. Des. 46(4), 357–368 (2010)

    Article  Google Scholar 

  • Horton, J., Gover, M., Tupholme, G.: Stiffness of rubber bush mountings subjected to radial loading. Rubber Chem. Technol. 73(2), 253–264 (2000a)

    Article  Google Scholar 

  • Horton, J., Gover, M., Tupholme, G.: Stiffness of rubber bush mountings subjected to tilting deflection. Rubber Chem. Technol. 73(4), 619–633 (2000b)

    Article  Google Scholar 

  • Kaliske, M., Rothert, H.: Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput. Mech. 19(3), 228–239 (1997)

    Article  MATH  Google Scholar 

  • Kaya, N., Erkek, M.Y., Güven, C.: Hyperelastic modelling and shape optimisation of vehicle rubber bushings. Int. J. Veh. Des. 71(1–4), 212–225 (2016)

    Article  Google Scholar 

  • Khajehsaeid, H., Baghani, M., Naghdabadi, R.: Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: a compressible visco-hyperelastic approach. Int. J. Mech. Mater. Des. 9(4), 385–399 (2013)

    Article  Google Scholar 

  • Li, K., Liu, J., Han, X., Jiang, C., Qin, H.: Identification of oil-film coefficients for a rotor-journal bearing system based on equivalent load reconstruction. Tribol. Int. 104, 285–293 (2016)

    Article  Google Scholar 

  • Lijun, Z., Zengliang, Y., Zhuoping, Y.: Novel empirical model of rubber bushing in automotive suspension system. In: Proceedings of ISMA, 20–22 September (0170) (2010)

  • Liu, J., Meng, X., Jiang, C., Han, X., Zhang, D.: Time-domain Galerkin method for dynamic load identification. Int. J. Numer. Meth. Eng. 105(8), 620–640 (2016)

    Article  MathSciNet  Google Scholar 

  • Liu, J., Sun, X., Han, X., Jiang, C., Yu, D.: A novel computational inverse technique for load identification using the shape function method of moving least square fitting. Comput. Struct. 144, 127–137 (2014)

    Article  Google Scholar 

  • Lu, Y.C.: Fractional derivative viscoelastic model for frequency-dependent complex moduli of automotive elastomers. Int. J. Mech. Mater. Des. 3(4), 329–336 (2006)

    Article  MathSciNet  Google Scholar 

  • Luo, Y., Liu, Y., Yin, H.: Numerical investigation of nonlinear properties of a rubber absorber in rail fastening systems. Int. J. Mech. Sci. 69, 107–113 (2013)

    Article  Google Scholar 

  • Medalia, A.: Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 51(3), 437–523 (1978)

    Article  Google Scholar 

  • Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42(1), 339–362 (1969)

    Article  Google Scholar 

  • Oldham, K., Spanier, J.: The fractional calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  • Olsson, A.K.: Finite element procedures in modelling the dynamic properties of rubber. Lund University, Structural Mechanics (2007)

    Google Scholar 

  • Oscar, J., Centeno, G.: Finite Element Modeling of Rubber Bushing for Crash Simulation-Experimental Tests and Validation. Structural Mechanics, Lund University, Lund (2009)

    Google Scholar 

  • Payne, A., Whittaker, R.: Low strain dynamic properties of filled rubbers. Rubber Chem. Technol. 44(2), 440–478 (1971)

    Article  Google Scholar 

  • Pipkin, A., Rogers, T.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16(1), 59–72 (1968)

    Article  MATH  Google Scholar 

  • Puel, G., Bourgeteau, B., Aubry, D.: Parameter identification of nonlinear time-dependent rubber bushings models towards their integration in multibody simulations of a vehicle chassis. Mech. Syst. Signal Process. 36(2), 354–369 (2013)

    Article  Google Scholar 

  • Sjöberg, M.M., Kari, L.: Non-linear behavior of a rubber isolator system using fractional derivatives. Veh. Syst. Dyn. 37(3), 217–236 (2002)

    Article  Google Scholar 

  • Wineman, A., Van Dyke, T., Shi, S.: A nonlinear viscoelastic model for one dimensional response of elastomeric bushings. Int. J. Mech. Sci. 40(12), 1295–1305 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (10048305, Launching Plug-in Digital Analysis Framework for Modular System Design) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.S., Shin, J.K., Msolli, S. et al. Prediction of the dynamic equivalent stiffness for a rubber bushing using the finite element method and empirical modeling. Int J Mech Mater Des 15, 77–91 (2019). https://doi.org/10.1007/s10999-017-9400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9400-7

Keywords

Navigation