Skip to main content

Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells

Abstract

The design and analysis of lattice structures manufactured using additive manufacturing technique is a new approach to create lightweight high-strength components. However, it is difficult for engineers to choose the proper unit cell for a certain function structure and loading case. In this paper, three beam-like lattice structures with triangular prism, square prism and hexagonal prism were designed, manufactured by SLM process using AlSi10Mg and tested. The mechanical performances of lattice structures with equal relative density, equal base area and height, and equal length for all unit cells were conducted by finite element analysis (FEA). It was found that effective Young’s modulus is proportional to relative density, but with different affecting levels. When the lattice structures are designed with the same relative density or the same side lengths, the effective Young’s modulus of lattice structure with triangular prism exhibits the maximum value for both cases. When the lattice structures are designed with the same base areas for all unit cells, the effective Young’s modulus of lattice structures with square prism presents the maximum. FEA results also show that the maximum stress of lattice structures with triangular prisms in each comparison is at the lowest level and the stiffness-to-mass ratio remains at the maximum value, showing the overwhelming advantages in terms of mechanical strength. The excellent agreements between numerical results and experimental tests reveal the validity of FEA methods applied. The results in this work provide an explicit guideline to fabricate beam-like lattice structures with the best tensile and bending capabilities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Ahmadi, S.M., Campoli, G., Amin Yavari, S., et al.: Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J. Mech. Behav. Biomed. Mater. 34, 106–115 (2014)

    Article  Google Scholar 

  2. Alzahrani, M., Choi, S.-K., Rosen, D.W.: Design of truss-like cellular structures using relative density mapping method. Mater. Des. 85, 349–360 (2015)

    Article  Google Scholar 

  3. Ashby, M.F., Medalist, R.M.: The mechanical properties of cellular solids. Metall. Trans. A 14(9), 1755–1769 (1983)

    Article  Google Scholar 

  4. Brandl, E., Heckenberger, U., Holzinger, V., et al.: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012)

    Article  Google Scholar 

  5. Brennan-Craddock, J., Brackett, D., Wildman, R., et al.: The design of impact absorbing structures for additive manufacture. In: Journal of Physics: Conference Series. IOP Publishing (2012)

  6. Brenne, F., Niendorf, T., Maier, H.J.: Additively manufactured cellular structures: impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 213(9), 1558–1564 (2013)

    Article  Google Scholar 

  7. Choi, J., Chae, T.-S.: Effective stiffness and effective compressive yield strength for unit-cell model of complex truss. Int. J. Mech. Mater. Des. 11(1), 91–110 (2015)

    Article  Google Scholar 

  8. Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49(8), 1747–1769 (2001)

    Article  MATH  Google Scholar 

  9. Eshraghi, S., Das, S.: Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater. 8(8), 3138–3143 (2012)

    Article  Google Scholar 

  10. Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al.: The topological design of multifunctional cellular metals. Prog. Mater Sci. 46(3), 309–327 (2001)

    Article  Google Scholar 

  11. Gervasi, V.R., Stahl, D.C.: Design and fabrication of components with optimized lattice microstructures. In: Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX (2004)

  12. Giannitelli, S., Accoto, D., Trombetta, M., et al.: Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 10(2), 580–594 (2014)

    Article  Google Scholar 

  13. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  14. Gibson, L.J., Ashby, M.: The mechanics of three-dimensional cellular materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (1982)

  15. Gorguluarslan, R.M., Gandhi, U.N., Mandapati, R., et al.: Design and fabrication of periodic lattice-based cellular structures. Comput. Aided Des. Appl. 13(1), 50–62 (2016)

    Article  Google Scholar 

  16. Hao, L, Raymond, D.: Design and additive manufacturing of cellular lattice structures. In: The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP). Taylor & Francis Group, Leiria (2011)

  17. Hunt, H.: The mechanical strength of ceramic honeycomb monoliths as determined by simple experiments: advanced materials. Chem. Eng. Res. Des. 71(3), 257–266 (1993)

    Google Scholar 

  18. Jin, T., Zhou, Z., Wang, Z., et al.: Experimental study on the effects of specimen in-plane size on the mechanical behavior of aluminum hexagonal honeycombs. Mater. Sci. Eng. A 635, 23–35 (2015)

    Article  Google Scholar 

  19. Ju, J., Summers, J.D.: Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Mater. Des. 32(2), 512–524 (2011)

    Article  Google Scholar 

  20. Kempen, K., Thijs, L., Van Humbeeck, J., et al.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39, 439–446 (2012)

    Article  Google Scholar 

  21. Lee, S., Barthelat, F., Moldovan, N., et al.: Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials. Int. J. Solids Struct. 43(1), 53–73 (2006)

    Article  Google Scholar 

  22. Li, P.: Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures. Mater. Sci. Eng., A 622, 114–120 (2015)

    Article  Google Scholar 

  23. Li, Z., Zhang, D.Z., Dong, P., et al.: A lightweight and support-free design method for selective laser melting. Int. J. Adv. Manuf. Technol. 90(9–12), 2943–2953 (2017)

    Article  Google Scholar 

  24. Luxner, M.H., Stampfl, J., Pettermann, H.E.: Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 40(22), 5859–5866 (2005)

    Article  Google Scholar 

  25. Maskery, I., Aboulkhair, N.T., Corfield, M.R., et al.: Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater. Charact. 111, 193–204 (2016)

    Article  Google Scholar 

  26. Nguyen, J., Park, S.-I., Rosen, D.: Heuristic optimization method for cellular structure design of light weight components. Int. J. Precis. Eng. Manuf. 14(6), 1071–1078 (2013)

    Article  Google Scholar 

  27. Niu, J., Choo, H.L., Sun, W.: Finite element analysis and experimental study of plastic lattice structures manufactured by selective laser sintering. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 231(1–2), 171–178 (2017)

    Google Scholar 

  28. Onck, P., Andrews, E., Gibson, L.: Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43(3), 681–699 (2001)

    Article  MATH  Google Scholar 

  29. Park, S.-I., Rosen, D.W., Choi, S.-K., et al.: Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Addit. Manuf. 1, 12–23 (2014)

    Article  Google Scholar 

  30. Parthasarathy, J., Starly, B., Raman, S.: A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manuf. Process. 13(2), 160–170 (2011)

    Article  Google Scholar 

  31. Read, N., Wang, W., Essa, K., et al.: Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater. Des. 65, 417–424 (2015)

    Article  Google Scholar 

  32. Reinhart, G., Teufelhart, S.: Load-adapted design of generative manufactured lattice structures. Phys. Procedia 12, 385–392 (2011)

    Article  Google Scholar 

  33. Rosen, D.W.: Design for additive manufacturing: a method to explore unexplored regions of the design space. In: Eighteenth Annual Solid Freeform Fabrication Symposium (2007)

  34. Seepersad, C.C., Kumar, R.S., Allen, J.K., et al.: Multifunctional design of prismatic cellular materials. J. Comput. Aided Mater. Des. 11(2), 163–181 (2004)

    Article  Google Scholar 

  35. Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)

    Article  Google Scholar 

  36. Solutions, S.: SLM Metal Powder. https://slm-solutions.com/products/accessories-and-consumables/slm-metal-powder (2016)

  37. Wang, H., Chen, Y., Rosen, D.W.: A hybrid geometric modeling method for large scale conformal cellular structures. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers (2005)

  38. Wang, D., Yang, Y., Liu, R., et al.: Study on the designing rules and processability of porous structure based on selective laser melting (SLM). J. Mater. Process. Technol. 213(10), 1734–1742 (2013)

    Article  Google Scholar 

  39. Williams, C.B., Cochran, J.K., Rosen, D.W.: Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 53(1), 231–239 (2011)

    Article  Google Scholar 

  40. Yan, C., Hao, L., Hussein, A., et al.: Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tools Manuf. 62, 32–38 (2012)

    Article  Google Scholar 

  41. Yan, C., Hao, L., Hussein, A., et al.: Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater. Sci. Eng. A 628, 238–246 (2015)

    Article  Google Scholar 

  42. Yang, L., Harrysson, O., Cormier, D., et al.: Additive manufacturing of metal cellular structures: design and fabrication. JOM 67(3), 608–615 (2015)

    Article  Google Scholar 

  43. Youssef, S., Maire, E., Gaertner, R.: Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater. 53(3), 719–730 (2005)

    Article  Google Scholar 

  44. Zok, F.W., Rathbun, H.J., Wei, Z., et al.: Design of metallic textile core sandwich panels. Int. J. Solids Struct. 40(21), 5707–5722 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hui Leng Choo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Choo, H.L., Sun, W. et al. Numerical study on load-bearing capabilities of beam-like lattice structures with three different unit cells. Int J Mech Mater Des 14, 443–460 (2018). https://doi.org/10.1007/s10999-017-9384-3

Download citation

Keywords

  • Lattice structure
  • Unit cell
  • Additive manufacturing (AM)
  • Finite element analysis (FEA)
  • Selective laser melting (SLM)