Effect of seat belt and head restraint on occupant’s response during rear-end collision

  • Mohamed T. Z. Hassan
  • S. A. MeguidEmail author


Current neck injury criteria used to evaluate whiplash injuries are based on the kinematics or kinetics of the occupant’s head and neck during rear impacts. The occupant’s response is affected by many factors including impact severity, seat design and occupant related factors such as gender and posture. Most of the current finite element models are concerned with modeling the head and neck, ignoring the interaction of the seat with the occupant during rear collision. In this work the Global Human Body Model Consortium (GHBMC) finite element model was used to study these interaction effects with emphases on the effect of seat belt, headrest and seat stiffness on the occupant’s response during rear-end collisions and evaluate the response using three neck injury criteria. The study shows the dramatic importance of the occupant’s seat restraint and head rest upon occupant safety. Specifically, the occupant ramping during rear impacts can be prevented by using the seat belt. Furthermore, the headrest reduces the head displacement and rotation. Our work further reveals that the head displacement reduction can lead to higher moments, axial and shear forces at the neck, especially for cases involving poorly adjusted or stiffer headrest.


Whiplash Injury Rear-impacts Finite element Seat belt Headrest 



This paper was made possible by NPRP grant #6 - 292 - 2 - 127 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The authors also wish to acknowledge the Global Human Body Model Consortium (exclusively distributed by Elemance LLC Winston Salem, NC, USA) for using the 50th percentile seated male FE model. Finally, the authors wish to thank Dr. Stewart McLachlin for his help obtaining the GHBMC FE model.


  1. Barnsley, L., Lord, S., Bogduk, N.: Clinical review whiplash injury. Pain 58, 283–307 (1994)CrossRefGoogle Scholar
  2. Bostrom, O., Svensson, M., Aldman, B., Hansson, H.A., Haland, Y., Lovsund, P., Seeman, T., Suneson, A., Saljo, A., Ortengren, T.: A new neck injury criterion candidate based on injury findings in the cervical spinal ganglia after experimental neck extension trauma. In: Proceedings of the 1996 international IRCOBI conference biomechanics impact (1996)Google Scholar
  3. Cronin, D.S.: Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J. Mech. Behav. Biomed. Mater. 33, 55–66 (2014). doi: 10.1016/j.jmbbm.2013.01.006 CrossRefGoogle Scholar
  4. Davidsson, J., Deutscher, C., Hell, W., Svensson, M.Y.: Human volunteer kinematics in rear-end sled collisions human volunteer kinematics in rear-end sled collisions. J. Crash Prev. Inj. Control 2, 319–333 (2001). doi: 10.1080/10286580008902576 CrossRefGoogle Scholar
  5. De Jager, M.K.: Mathematical head-neck models for acceleration impacts. Technical University of Eindhoven (1996)Google Scholar
  6. Eppinger, R., Sun, E., Bandak, F., Haffner, M., Khaewpong, N., Maltese, M., Kuppa, S., Nguyen, T., Takhounts, E., Tannous, R., Zhang, A., Saul, R.: Development of improved injury criteria for the assessment of advanced automotive restraint systems—II. Natl. Highw. Traffic Saf. Adm. Dep. Transp, DC (1999)Google Scholar
  7. Farmer, C.M., Wells, J.K., Lund, A.K.: Effects of head restraint and seat redesign on neck injury risk in rear-end crashes. Traffic Inj. Prev. 4, 83–90 (2003). doi: 10.1080/15389580309867 CrossRefGoogle Scholar
  8. Fice, J.B., Cronin, D.S., Panzer, M.B.: Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39, 2152–2162 (2011). doi: 10.1007/s10439-011-0315-4 CrossRefGoogle Scholar
  9. Foster, J., Kortge, J., Wolanin, M.: Hybrid III-a biomechanically-based crash test dummy. SAE Tech. Pap. 770938, 1977 (1977). doi: 10.4271/770938 Google Scholar
  10. Grauer, J.N., Panjabi, M.M., Cholewicki, J., Nibu, K., Dvorak, J.: Whiplash produces and S-shaped curvature of the neck with hyperextension at lower levels. Spine (Phila. Pa. 1976) 22, 2489–2494 (1997)CrossRefGoogle Scholar
  11. Grujicic, M., Pandurangan, B., Arakere, G., Bell, W.C., He, T., Xie, X.: Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger–vehicle occupants. Mater. Des. 30, 4273–4285 (2009). doi: 10.1016/j.matdes.2009.04.028 CrossRefGoogle Scholar
  12. Hai-bin, C., Yang, K.H., Zheng-guo, W.: Biomechanics of whiplash injury. Chin. J. Traumatol. 12, 305–314 (2009). doi: 10.3760/cma.j.issn.1008-1275.2009.05.011 Google Scholar
  13. Himmetoglu, S., Acar, M., Bouazza-Marouf, K., Taylor, A.: A multi-body human model for rear-impact simulation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 223, 623–638 (2009). doi: 10.1243/09544070JAUTO985 CrossRefGoogle Scholar
  14. Hoover, J., Meguid, S.A.: Analytical viscoelastic modelling of whiplash using lumped- parameter approach. Int. J. Mech. Mater. Des. 11, 125–137 (2015). doi: 10.1007/s10999-015-9306-1 CrossRefGoogle Scholar
  15. IIHS: Vehicle Seat/Head Restraint Evaluation Protocol Static Geometric Criteria (Version IV) February 2016. Ruckersville, VA (2016)Google Scholar
  16. Kuppa, S., Saunders, J., Stammen, J., Mallory, A.: Kinematically based whiplash injury criterion. US. (2005). doi: 10.1017/CBO9781107415324.004
  17. Luan, F., Yang, K.H., Deng, B., Begeman, P.C., Tashman, S., King, A.I.: Qualitative analysis of neck kinematics during low-speed rear-end impact. Clin. Biomech. 15, 649–657 (2000)CrossRefGoogle Scholar
  18. McKenzie, J.A., Williams, J.F.: The Dynamic Behaviour of the Head and Cervical Spine During “Whiplash”. J. Biomech. 4, 477–490 (1971)CrossRefGoogle Scholar
  19. Meyer, F., Bourdet, N., Deck, C., Willinger, R., Raul, J.S.: Human neck finite element model development and validation against original experimental data. Stapp Car Crash J. 48, 177–206 (2004)Google Scholar
  20. NHTSA. Traffic Safety Facts 2014—A compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system. Washington, DC (2014)Google Scholar
  21. Prasad, P., Kim, A., Weerappuli, D.P.V.: Biofidelity of anthropomorphic test devices for rear impact. In: 41st Stapp Car Crash Conference, Society of Automotive Engineers, pp. 387–415. Warrendale, PA (1997)Google Scholar
  22. Schmitt, K., Muser, M.H., Walz, F.H., Niederer, P.F., Muser, M.H., Walz, F.H., Niederer, P.F., Schmitt, K., Muser, M.H., Walz, F.H.: N km–a proposal for a neck protection criterion for low-speed rear-end impacts. Traffic Inj. Prev. 3, 117–126 (2002). doi: 10.1080/15389580212002 CrossRefGoogle Scholar
  23. Schmitt, K.-U., Walz, F., Vetter, D., Muser, M.: Whiplash injury: cases with a long period of sick leave need biomechanical assessment. Eur. Spine J. 12, 247–254 (2003). doi: 10.1007/s00586-002-0490-y Google Scholar
  24. Siegmund, G.P., Brault, J.R., Wheeler, J.B.: The relationship between clinical and kinematic responses from human subject testing in rear-end automobile collisions. Accid. Anal. Prev. 32, 207–217 (2000)CrossRefGoogle Scholar
  25. Siegmund, G.P., Winkelstein, B.A., Ivancic, P.C., Svensson, M.Y., Vasavada, A.: The anatomy and biomechanics of acute and chronic whiplash injury. Traffic Inj. Prev. 10, 101–112 (2009). doi: 10.1080/15389580802593269 CrossRefGoogle Scholar
  26. Stemper, B.D., Yoganandan, N., Rao, R.D., Pintar, F.A.: Influence of thoracic ramping on whiplash kinematics. Clin. Biomech. 20, 1019–1028 (2005). doi: 10.1016/j.clinbiomech.2005.06.011 CrossRefGoogle Scholar
  27. Tencer, A.F., Huber, P., Mirza, S.K.: A comparison of biomechanical mechanisms of whiplash injury from rear impacts. In: 47th Annual Proceedings Association for the Advancement of Automotive Medicine. Lisbon, Portugal (2003)Google Scholar
  28. van der Horst, M.J.: Human head neck response in frontal, lateral and rear end impact loading—modelling and validation. Thesis, Technische Universiteit Eindhoven (2002). doi:
  29. Viano, D.C., Gargan, M.F.: headrest position during normal driving: implication to neck injury risk in rear crashes. Accid. Anal. Prev. 28, 665–674 (1996)CrossRefGoogle Scholar
  30. Zhang, L., Meng, Q.: Study on cervical spine stresses based on three-dimensional finite element method. In: 2010 International Conference on Computational Information Sciences, pp. 420–423. doi: 10.1109/ICCIS.2010.109

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Mechanics and Aerospace Design LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations