Skip to main content
Log in

Dynamic behavior of micro-resonator under alternating current voltage

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper investigates the dynamic behavior of a micro-resonator under various levels of Alternating Current (AC) voltage, without a biased Direct Current voltage. The governing equations are developed in the framework of Euler–Bernoulli beam theory, accounting for the effects of damping, fringing field, and mid-plane stretching using von Karman nonlinear strain. The steady-state frequency response of the micro-resonator is derived from the governing equations by the method of multiple scales. The transient response is also derived by the long-time integration. The results of our work reveal that the applied AC voltage and the mid-plane stretching (quantified by a stretching parameter) determine the characteristic feature of the dynamic behavior of the micro-resonator, such as the dynamic pull-in, the frequency response of linear or hardening characteristic. A design diagram in terms of AC voltage amplitude and stretching parameter is developed to show the domains of the different dynamic behavior characteristics. Our results also reveal the significant effects of damping and boundary conditions on the dynamic behavior and the design diagram of the micro-resonator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Almog, R., Zaitsev, S., Shtempluck, O., Buks, E.: Noise squeezing in a nanomechanical duffing resonator. Phys. Rev. Lett. 98, 078103 (2007)

    Article  Google Scholar 

  • Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 045013 (2009)

    Article  Google Scholar 

  • Badzey, R.L., Zolfagharkhani, G., Gaidarzhy, A., Mohanty, P.: A controllable nanomechanical memory element. Appl. Phys. Lett. 85, 3587–3589 (2004)

    Article  Google Scholar 

  • Batra, R.C., Porfiri, M., Spinello, D.: Electromechanical model of electrically actuated narrow microbeams. J. Microelectromech. S. 15, 1175–1189 (2006)

    Article  Google Scholar 

  • Brown, E.R.: RF-MEMS switches for reconfigurable integrated circuits. IEEE T. Microw. Theory 46, 1868–1880 (1998)

    Article  Google Scholar 

  • Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., Babcock, K., Manalis, S.R.: Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007)

    Article  Google Scholar 

  • Carr, D.W., Evoy, S., Sekaric, L., Craighead, H.G., Parpia, J.M.: Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999)

    Article  Google Scholar 

  • Caruntu, D.I., Knecht, M.W.: On nonlinear response near-half natural frequency of electrostatically actuated microresonators. Int. J. Struct. Stab. Dyn. 11, 641–672 (2011)

    Article  Google Scholar 

  • Caruntu, D.I., Martinez, I.: Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators. Int. J. Nonlinear Mech. 66, 28–32 (2014)

    Article  Google Scholar 

  • Caruntu, D.I., Martinez, I., Knecht, M.W.: Reduced order model analysis of frequency response of alternating current near half natural frequency electrostatically actuated MEMS cantilevers. J. Comput. Nonlinear Dyn. 8, 031011 (2013)

    Article  Google Scholar 

  • Charlot, B., Sun, W., Yamashita, K., Fujita, H., Toshiyoshi, H.: Bistable nanowire for micromechanical memory. J. Micromech. Microeng. 18, 045005 (2008)

    Article  Google Scholar 

  • Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotech. 7, 301–304 (2012)

    Article  Google Scholar 

  • Chiu, H.-Y., Hung, P., Postma, H.W.Ch., Bockrath, M.: Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 8, 4342–4346 (2008)

    Article  Google Scholar 

  • Eltaher, M.A., Agwa, M.A., Mahmoud, F.F.: Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12, 211–221 (2016)

    Article  Google Scholar 

  • Evoy, S., Carr, D.W., Sekaric, L., Olkhovets, A., Parpia, J.M., Craighead, H.G.: Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators. J. Appl. Phys. 86, 6072–6077 (1999)

    Article  Google Scholar 

  • Farokhi, H., Ghayesh, M.H.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. (2015a). doi:10.1007/s10999-015-9295-0

    Google Scholar 

  • Farokhi, H., Ghayesh, M.H.: Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int. J. Mech. Mater. Des. (2015b). doi:10.1007/s10999-015-9316-z

    Google Scholar 

  • Gui, C., Legtenberg, R., Tilmans, H.A.C., Fluitman, J.H.J., Elwenspoek, M.: Nonlinearity and hysteresis of resonant strain gauges. J. Microelectromech. Syst. 7, 122–127 (1998)

    Article  Google Scholar 

  • Gupta, R.K.: Electrostatic pull-in test structure design for in situ mechanical property measurements of microelectromechanical systems (MEMS). Ph.D. thesis, Massachusetts Institute of Technology, USA (1997)

  • Hopcroft, M.A., Kim, B., Chandorkar, S., Melamud, R., Agarwal, M., Jha, C.M., Bahl, G., Salvia, J., Mehta, H., Lee, H.K., Candler, R.N., Kenny, T.W.: Using the temperature dependence of resonator quality factor as a thermometer. Appl. Phys. Lett. 91, 013505 (2007)

    Article  Google Scholar 

  • Intaraprasonk, V., Fan, S.: Nonvolatile bistable all-optical switch from mechanical buckling. Appl. Phys. Lett. 98, 241104 (2011)

    Article  Google Scholar 

  • Jang, J.E., Cha, S.N., Choi, Y.J., Kang, D.J., Butler, T.P., Hasko, D.G., Jung, J.E., Kim, J.M., Amaratunga, G.A.J.: Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nat. Nanotech. 3, 26–30 (2008)

    Article  Google Scholar 

  • Jia, X.L., Yang, J., Kitipornchai, S., Lim, C.W.: Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J. Sound Vib. 331, 3397–3411 (2012)

    Article  Google Scholar 

  • Jonsson, L.M., Axelsson, S., Nord, T., Viefers, S., Kinaret, J.M.: High frequency properties of a CNT-based nanorelay. Nanotechnology 15, 1497–1502 (2004)

    Article  Google Scholar 

  • Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. Int. J. Nonlinear Mech. 46, 532–542 (2011)

    Article  Google Scholar 

  • Kim, I.K., Lee, S.I.: Theoretical investigation of nonlinear resonances in a carbon nanotube cantilever with a tip-mass under electrostatic excitation. J. Appl. Phys. 114, 104303 (2013)

    Article  Google Scholar 

  • Kivi, A.R., Azizi, S., Khalkhali, A.: Sensitivity enhancement of a MEMS sensor in nonlinear regime. Int. J. Mech. Mater. Des. (2015). doi:10.1007/s10999-015-9310-5

    Google Scholar 

  • Kuang, J.-H., Chen, C.-J.: Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J. Micromech. Microeng. 14, 647–655 (2004)

    Article  Google Scholar 

  • Kwon, T., Eom, K., Park, J., Yoon, D.S., Lee, H.L., Kim, T.S.: Micromechanical observation of the kinetics of biomolecular interactions. Appl. Phys. Lett. 93, 173901 (2008)

    Article  Google Scholar 

  • Mestrom, R.M.C., Fey, R.H.B., van Beek, J.T.M., Phan, K.L., Nijmeijer, H.: Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens. Actuators A 142, 306–315 (2008)

    Article  Google Scholar 

  • Mohanty, P.: Nano-oscillators get it together. Nature 437, 325–326 (2005)

    Article  Google Scholar 

  • Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonantors. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  • Ouakad, H.M., Younis, M.I.: The dynamic behavior of MEMS arch resonators actuated electrically. Int. J. Nonlinear Mech. 45, 704–713 (2010)

    Article  Google Scholar 

  • Palmer, H.B.: The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel transformation. Trans. Am. Inst. Elect. Eng. 56, 363–366 (1937)

    Article  Google Scholar 

  • Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D., Zettl, A.: Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006)

    Article  Google Scholar 

  • Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16, 890–899 (2006)

    Article  Google Scholar 

  • Roodenburg, D., Spronck, J.W., van der Zant, H.S.J., Venstra, W.J.: Buckling beam micromechanical memory with on-chip readout. Appl. Phys. Lett. 94, 183501 (2009)

    Article  Google Scholar 

  • Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., Lieber, C.M.: Carbon nanotube—based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)

    Article  Google Scholar 

  • Ruzziconi, L., Bataineh, A.M., Younis, M.I., Cui, W., Lenci, S.: Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling. J. Micromech. Microeng. 23, 075012 (2013)

    Article  Google Scholar 

  • Southworth, D.R., Bellan, L.M., Linzon, Y., Craighead, H.G., Parpia, J.M.: Stress-based vapor sensing using resonant microbridges. Appl. Phys. Lett. 96, 163503 (2010)

    Article  Google Scholar 

  • Tilmans, H.A.C., Legtenberg, R.: Electrostatically driven vacuum-encapsulated polysilicon resonators Part II. Theory and performance. Sens. Actuators A 45, 67–84 (1994)

    Article  Google Scholar 

  • van der Meijs, N.P., Fokkema, J.T.: VLSI circuit reconstruction from mask topology. Integr. VLSI J. 2, 85–119 (1984)

    Article  Google Scholar 

  • Wang, Q., Arash, B.: A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput. Mater. Sci. 82, 350–360 (2014)

    Article  Google Scholar 

  • Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006)

    Article  Google Scholar 

  • Zhang, Y., Wang, Y., Li, Z., Huang, Y., Li, D.: Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J. Microelectromech. Syst. 16, 684–693 (2007)

    Article  Google Scholar 

  • Zook, J.D., Burns, D.W., Guckel, H., Sniegowski, J.J., Engelstad, R.L., Feng, Z.: Characteristics of polysilicon resonant microbeams. Sens. Actuators A 35, 51–59 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Natural Sciences and Engineering Research Council of Canada and the Discovery Accelerator Supplements is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Meguid, S.A. Dynamic behavior of micro-resonator under alternating current voltage. Int J Mech Mater Des 13, 481–497 (2017). https://doi.org/10.1007/s10999-016-9354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-016-9354-1

Keywords

Navigation