Skip to main content

Advertisement

Log in

Structural optimization of rotating tapered laminated thick composite plates with ply drop-offs

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this study, structural optimization of rotating tapered thick laminated composite plates with ply drop-offs has been investigated numerically. The governing differential equations of motion of the tapered composite plate have been presented including the energy associated with the inertia force, coriolis force, displacement dependent centrifugal force and initial stress resultants due to steady state rotation. Four noded quadrilateral finite element has been formulated based on the first order shear deformation theory. Finite element analysis results are validated with experimental results for natural frequencies of the tapered plate with various configurations. Various cases of optimization problems are formulated with different objective functions in terms of maximization of natural frequencies and damping factors (individually and combined) and solved using genetic algorithm in order to obtain optimal ply sequence and ply orientation. It is shown that the optimization problem with maximization of fundamental modal damping factor without rotating condition yields the optimal layout as 90° for all the layers in the plate. It is also observed that maximization of the fundamental modal damping factor yields identical optimal orientation for uniform and all the configurations of a tapered composite plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbulut, M., Sonmez, F.O.: Design optimization of laminated composites using a new variant of simulated annealing. Comput. Struct. 89, 1712–1724 (2011)

    Article  Google Scholar 

  • Assimina, A.P., Diwakar, N.K.: Design of composites using a generic unit cell model coupled with a hybrid genetic algorithm. Compos. Part A 39, 1433–1443 (2008)

    Article  Google Scholar 

  • Bruyneel, M.: A general and effective approach for the optimal design of fiber reinforced composite structures. Compos. Sci. Technol. 66, 1303–1314 (2006)

    Article  Google Scholar 

  • Chandiramani, N.K., Librescu, L., Shete, C.D.: On the free-vibration of rotating composite beam using a higher-order shear formulation. Aerosp. Sci. Technol. 6, 545–561 (2002)

    Article  MATH  Google Scholar 

  • Civalek, O.: A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates. Appl. Math. Model. 33, 300–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Conceicao Antonio, C.A.: A hierarchical genetic algorithm for reality based design of geometrically non-linear composite structures. Compos. Struct. 54, 37–47 (2001)

    Article  Google Scholar 

  • Conceicao Antonio, C.A., Torres, A.T., Soeiro, A.V.: Optimization of laminated composite structures using a bilevelstrategy. Compos. Struct. 33, 193–200 (1995)

    Article  Google Scholar 

  • Ganesan, R., Zabihollah, A.: Vibration analysis of tapered composite beams using a higher-order finite element. Part I: formulation. Compos. Struct. 77, 306–318 (2007a)

    Article  Google Scholar 

  • Ganesan, R., Zabihollah, A.: Vibration analysis of tapered composite beams using a higher-order finite element. Part II: parametric study. Compos. Struct. 77, 319–330 (2007b)

    Article  Google Scholar 

  • Gomes, H.M., Awruch, A.M., Lopes, P.A.M.: Reliability based optimization of laminated composite structures using genetic algorithms and Artificial Neural Networks. Struct. Saf. 33, 186–195 (2011)

    Article  Google Scholar 

  • He, K., Hoa, S.V., Ganesan, R.: The study of tapered laminated composite structures: a review. Compos. Sci. Technol. 60, 2643–2657 (2000)

    Article  Google Scholar 

  • Huang, M., Ma, X.Q., Sakiyama, T., Matuda, H., Morita, C.: Free vibration analysis of orthotropic rectangular plates with variable thickness and general boundary conditions. J. Sound Vib. 288, 931–955 (2005)

    Article  Google Scholar 

  • Irisarri, F.-X., HichamBassir, D., Carrere, N., Maire, J.-F.: Multiobjective stacking sequence optimization for laminated composite structures. Compos. Sci. Technol. 69, 983–990 (2009)

    Article  Google Scholar 

  • Kang, J.-H., Kim, C.-G.: Minimum-weight design of compressively loaded composite plates and stiffened panels for postbuckling strength by genetic algorithm. Compos. Struct. 69, 239–246 (2005)

    Article  Google Scholar 

  • Karabalis, D.L., Beskos, D.E.: Static, dynamic and stability analysis of structures composed of tapered beams. Comput. Struct. 16(6), 731–748 (1983)

    Article  MATH  Google Scholar 

  • Kim, J.-S., Kim, C.-G., Hong, C.-S.: Optimum design of composite structures with ply drop using genetic algorithm and expert system shell. Compos. Struct. 46(2), 171–187 (1999)

    Article  Google Scholar 

  • Leon, S.J., Erik, L.J.K.: Failure optimization of geometrically linear/nonlinear laminated composite structures using a two-step hierarchical model adaptivity. Comput. Methods Appl. Mech. Eng. 198, 2421–2438 (2009)

    Article  MATH  Google Scholar 

  • Luo, Z., QuantianLuo, Tong, L., GaoChongmin Song, W.: Shape morphing of laminated composite structures with photostrictive actuators via topology optimization. Compos. Struct. 93, 406–418 (2011)

  • Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic mates. ASME J. Appl. Mech. 18, 31–39 (1951)

    MATH  Google Scholar 

  • Muc, A., Gurba, W.: Genetic algorithms and finite element analysis in optimization of composite of composite structures. Compos. Struct. 54, 275–281 (2001)

    Article  Google Scholar 

  • Murthy, M.: An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates. NASA Technical Paper 1903 (1981)

  • Naik, G.N., Omkar, S.N., DheevatsaMudigere, Gopalakrishnan, S.: Nature inspired optimization techniques for the design optimization of laminated composite structures using failure criteria. Expert Syst. Appl. 38, 2489–2499 (2011)

    Article  Google Scholar 

  • Niu, B., NielsOlhoff, Lund, E., Cheng, G.: Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int. J. Solids Struct. 47, 2097–2114 (2010)

  • Paluch, B., Grediac, M., Faye, A.: Combining a finite element programme and a genetic algorithm to optimize composite structures with variable thickness. Compos. Struct. 83, 284–294 (2008)

    Article  Google Scholar 

  • Punch, W.F., Averill, R.C., Goodman, E.D., Lin, S.C., Ding, Y., Yip, Y.C.: Optimal design of laminated composite structures using coarse-grain parallel genetic algorithms. Comput. Syst. Eng. 5(4–6), 415–423 (1994)

    Article  Google Scholar 

  • RamalingeswaraRao, S., Ganesan, N.: Dynamic response of tapered composite beams using higher order shear deformation theory. J. Sound Vib. 187(5), 737–756 (1995)

    Article  Google Scholar 

  • Reddy, J.N.: A simple higher order theory for laminated composite plates. ASME J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  • Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. ASME J. Appl. Mech. 67, A69–A77 (1945)

    MathSciNet  MATH  Google Scholar 

  • Reissner, E.: On bending of elastic plates. Q. Appl. Math. 5, 5567 (1947)

    Article  MathSciNet  Google Scholar 

  • Reissner, E., Stavsky, Y.: Bending and stretching on certain types of heterogeneous isotropic elastic plates. ASME J. Appl. Mech. 28, 402–408 (1961)

    Article  MATH  Google Scholar 

  • Ribeiro, P.: Non-linear free periodic vibrations of variable stiffness composite laminated plates. Nonlinear Dyn. 70, 1535–1548 (2012)

    Article  MathSciNet  Google Scholar 

  • Srinivas, S., Rao, A.K.: Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct. 6, 1463–1481 (1970)

    Article  MATH  Google Scholar 

  • Walker, M., Smith, R.E.: A technique for the multiobjective optimization of laminated composite structures using genetic algorithms and finite element analysis. Compos. Struct. 62, 123–128 (2003)

    Article  Google Scholar 

  • Weigang, A., Dianyu, C., Peng, J.: A single-level composite structure optimization method based on a blending tapered model. Chin. J. Aeronaut. 26(4), 943–947 (2013)

  • Wu, C.M.L., Webber, J.P.H.: Analysis of tapered (in steps) laminated plates under uniform inplane load. Comput. Struct. 5, 87–100 (1986)

    Article  Google Scholar 

  • Yang, P.C., Norris, C.H., Stavsky, Y.: Elastic wave propagation in heterogeneous plates. Int. J. Solids Struct. 2, 665–684 (1966)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Aeronautics Research and Development Board, DefenceResearch and Development Organization, India for providing financial support through the project entitled “Vibration based structural health monitoring and progressive Failure Analysis of a Rotating Tapered Composite Plate’’ under the Grant No. DARO/08/1051682/M/I to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudevan Rajamohan.

Appendix

Appendix

1.1 Strain displacement matrix

$$ \left[ {B(x,y)} \right] = \left[ \partial \right]\left\{ u \right\} $$

where,

$$ \begin{aligned} \left[ \partial \right] & = \left[ {\begin{array}{*{20}c} {\frac{\partial }{\partial x}} & 0 & 0 & 0 & 0 \\ 0 & {\frac{\partial }{\partial y}} & 0 & 0 & 0 \\ {\frac{\partial }{\partial y}} & {\frac{\partial }{\partial x}} & 0 & 0 & 0 \\ 0 & 0 & 0 & {\frac{\partial }{\partial x}} & 0 \\ 0 & 0 & 0 & 0 & {\frac{\partial }{\partial y}} \\ 0 & 0 & 0 & {\frac{\partial }{\partial y}} & {\frac{\partial }{\partial x}} \\ 0 & 0 & {\frac{\partial }{\partial y}} & 0 & 1 \\ 0 & 0 & {\frac{\partial }{\partial x}} & 1 & 0 \\ \end{array} } \right] \\ \left\{ \chi \right\} & = \left[ {\bar{B}(x,y)} \right]\left\{ d \right\} \\ [\bar{B}_{i} (x,y)] & = \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{1} }}{\partial x}} & 0 & 0 & 0 & 0 \\ 0 & {\frac{{\partial N_{1} }}{\partial y}} & 0 & 0 & 0 \\ {\frac{{\partial N_{1} }}{\partial y}} & {\frac{{\partial N_{1} }}{\partial x}} & 0 & 0 & 0 \\ 0 & 0 & 0 & {\frac{{\partial N_{1} }}{\partial x}} & 0 \\ 0 & 0 & 0 & 0 & {\frac{{\partial N_{1} }}{\partial y}} \\ 0 & 0 & 0 & {\frac{{\partial N_{1} }}{\partial y}} & {\frac{{\partial N_{1} }}{\partial x}} \\ 0 & 0 & {\frac{{\partial N_{1} }}{\partial y}} & 0 & {N_{1} } \\ 0 & 0 & {\frac{{\partial N_{1} }}{\partial x}} & {N_{1} } & 0 \\ \end{array} \,{\kern 1pt} \;\ldots\begin{array}{*{20}c} {\frac{{\partial N_{4} }}{\partial x}} & 0 & 0 & 0 & 0 \\ 0 & {\frac{{\partial N_{4} }}{\partial y}} & 0 & 0 & 0 \\ {\frac{{\partial N_{4} }}{\partial y}} & {\frac{{\partial N_{4} }}{\partial x}} & 0 & 0 & 0 \\ 0 & 0 & 0 & {\frac{{\partial N_{4} }}{\partial x}} & 0 \\ 0 & 0 & 0 & 0 & {\frac{{\partial N_{4} }}{\partial y}} \\ 0 & 0 & 0 & {\frac{{\partial N_{4} }}{\partial y}} & {\frac{{\partial N_{4} }}{\partial x}} \\ 0 & 0 & {\frac{{\partial N_{4} }}{\partial y}} & 0 & {N_{4} } \\ 0 & 0 & {\frac{{\partial N_{4} }}{\partial x}} & {N_{4} } & 0 \\ \end{array} } \right] \\ [F_{i} (x,y)] & = \left[ {\begin{array}{*{20}c} 0 & 0 & {\frac{{\partial N_{w01} }}{\partial x}} & 0 & 0 \\ 0 & 0 & {\frac{{\partial N_{w01} }}{\partial y}} & 0 & 0 \\ \end{array} \;\;\ldots\begin{array}{*{20}c} 0 & 0 & {\frac{{\partial N_{w04} }}{\partial x}} & 0 & 0 \\ 0 & 0 & {\frac{{\partial N_{w04} }}{\partial y}} & 0 & 0 \\ \end{array} } \right] \\ N_{x} & = I_{T} (x)\;\varOmega^{2} \;\left( { - r_{0} (x + a) - q\;Le\;(x + a) - \frac{{(x + a)^{2} }}{2} + r_{0} \;Le\;(n_{x} - q) + \frac{{Le^{2} \;(n_{x}^{2} - q^{2} )}}{2}} \right),\quad \quad q = 0,1,2,3,\ldots\ldots,\left( {n_{x} - 1} \right) \\ N_{y} & = \;\frac{{I_{T} (x)}}{2}\;\varOmega^{2} \cos^{2} \phi \;\left( {\frac{{b^{2} }}{4} + y^{2} } \right) \\ \end{aligned} $$

where, r 0, Le, and n x are the hub radius, length of the finite element, total number of elements in the longitudinal direction of the tapered laminated composite plate respectively.

1.2 Inertia matrix

$$ \begin{aligned} \left[ I \right] & = \left[ {\begin{array}{*{20}c} {I_{T} (x)} & 0 & 0 & {I_{C} (x)} & 0 \\ 0 & {I_{T} (x)} & 0 & 0 & {I_{C} (x)} \\ 0 & 0 & {I_{T} (x)} & 0 & 0 \\ {I_{C} (x)} & 0 & 0 & {I_{R} (x)} & 0 \\ 0 & {I_{C} (x)} & 0 & 0 & {I_{R} (x)} \\ \end{array} } \right] \\ \left[ {I_{1} } \right] & = \left[ {\begin{array}{*{20}c} 0 & { - 2I_{T} (x)\varOmega_{z} } & {2I_{T} (x)\varOmega_{y} } & 0 & 0 \\ {2I_{T} (x)\varOmega_{z} } & 0 & { - 2I_{T} (x)\varOmega_{x} } & 0 & 0 \\ { - 2I_{T} (x)\varOmega_{y} } & {2I_{T} (x)\varOmega_{x} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ \left[ {I_{2} } \right] & = \left[ {\begin{array}{*{20}c} {I_{T} (x)\left( {\varOmega_{y}^{2} + \varOmega_{z}^{2} } \right)} & { - I_{T} (x)\varOmega_{x} \varOmega_{y} } & { - I_{T} (x)\varOmega_{x} \varOmega_{z} } & 0 & 0 \\ { - I_{T} (x)\varOmega_{x} \varOmega_{y} } & {I_{T} (x)\left( {\varOmega_{x}^{2} + \varOmega_{z}^{2} } \right)} & { - I_{T} (x)\varOmega_{z} \varOmega_{y} } & 0 & 0 \\ { - I_{T} (x)\varOmega_{x} \varOmega_{z} } & { - I_{T} (x)\varOmega_{z} \varOmega_{y} } & {I_{T} (x)\left( {\varOmega_{x}^{2} + \varOmega_{y}^{2} } \right)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwin Sudhagar, P., Ananda Babu, A., Rajamohan, V. et al. Structural optimization of rotating tapered laminated thick composite plates with ply drop-offs. Int J Mech Mater Des 13, 85–124 (2017). https://doi.org/10.1007/s10999-015-9319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-015-9319-9

Keywords

Navigation