Skip to main content
Log in

Dynamic modeling and vibration analysis of piezoelectric microcantilever in AFM application

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Piezoelectric microcantilevers (MCs) are widely used in common piezoelectric micro-electromechanical systems. These systems are used in ultraprecise scanning and characterization applications. Given the widespread use of this type of MCs in nanotechnology, their vibrating motion problem has recently become a matter of interest. Accurate vibration analysis and studying their vibrating behavior can play a key role in increasing their measurement accuracy and optimal design. For this purposes, first, the differential equation of motion of MCs is solved using modal superposition method by using Runge–Kutta in time domain and finite element methods. The extended Fourier amplitude sensitivity test statistical method is used to conduct sensitivity analysis on the main parameters of the vibrating motion to determine the effects of each interaction coefficient on the motion of the MC. Results showed that the numerical finite element method and modal superposition method based on the non-uniform beam model have acceptable accuracy in calculating resonance amplitude and natural frequency of this kind of MC. The results of the sensitivity analysis indicate the high sensitivity of the first vibrating mode to force coefficient, which means that this mode is suitable for topography of the sample surface and the nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( \overline{A} \) :

Fourier cosine

\( \bar{B} \) :

Fourier sine

C e :

Electromechanical coupling coefficient

C :

Damping coefficient

\( \bar{C} \) :

Global damping matrix in FEM

d :

Equilibrium distance between tip and sample/nanoparticle

d 31 :

Piezoelectric constant

E :

Desired value of quantity

E i :

Elasticity module of each layer

f :

Tip/nanoparticle-sample force

F :

Force vector

\( \bar{f} \) :

Interaction force in FEM

\( \bar{F} \) :

Force vector in FEM

Q :

Global displacement vector in FEM

q n :

Generalized time-dependent coordinates

r t :

Tip radius

r p :

Nanoparticle radius

S i :

Sensitivity index

\( S_{i}^{F} \) :

First order sensitivity index

\( S_{{T_{i} }}^{F} \) :

Total effect of sensitivity

V :

Microcantilever transverse deformation

W i :

Layer width

W t :

Tip width

X i :

Input quantity

H :

Hamaker constant

h i :

Layer thickness

I :

Unit matrix

K :

Stifness matrix

K(x):

Microcantilever stifness

\( \bar{K} \) :

Global stiffness matrix in FEM

L :

Microcantilever length

L e :

Element length

L p :

Probe’s length

m :

Mass of unit length

M :

Mass matrix

\( \bar{M} \) :

Global mass matrix in FEM

N j :

Hermitian shape functions

P(t):

Input voltage

P(X):

Multidimensional probability function

\( \bar{X}_{i} \) :

Actual value of input quantity

Y :

Output quantity

γ n :

Coefficient in ordinary differential equation

δ(x):

Dirac function

ρ :

Density

σ :

Conditional variance

σ Y :

Unconditional variance of output quantity

φ n :

nth MC mode shape

ω n :

Natural frequency

Ω :

Frequency

References

  • Adams, J.D., Manning, L., Rogers, B., Jones, M., Minne, S.C.: Self-sensing tapping mode atomic force microscopy. Sens. Actuators A 121, 262–266 (2005)

    Article  Google Scholar 

  • Boskovic, S., Chon, J.W.M., Mulvaney, P., Sader, J.E.: Rheological measurements using MCs. J. Rheol. 46(4), 891–899 (2002)

    Article  Google Scholar 

  • Corbeil, J.L., Lavrik, N.V., Rajic, S.: Self-leveling uncooled MC thermal detector. Appl. Phys. Lett. 81(7), 1306–1308 (2002)

    Article  Google Scholar 

  • Delnavaz, A., Mahmoodi, S.N., Jalili, N., Ahadian, M.M., Zohoor, H.: Nonlinear vibrations of microcant-ilevers subjected to tip-sample interactions: theory and experiment. J. Appl. Phys. 106, 113510 (2009)

    Article  Google Scholar 

  • Dutta, P., Senesac, L.R., Lavrik, N.V., Datskos, P.G., Sepaniak, M.J.: Response signatures for nanostructured, optically-probed, functionalized MC sensing arrays. Sens. Lett. 2, 1–8 (2004). 15(2)

    Article  Google Scholar 

  • Fung, R.F., Huang, S.C.: Dynamic modeling and vibration analysis of the atomic force microscope. ASME J. Vib. Acoust. 123, 502–509 (2001)

    Article  Google Scholar 

  • Ghaderi, R., Nejat, A.: Nonlinear mathematical modeling of vibrating motion of nanomechanical cantilever active probe. Lat. Am. J. Solids Struct. 11, 369–385 (2014)

    Article  Google Scholar 

  • Gupta, A., Akin, D., Bashir, R.: Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84(11), 1976–1978 (2004)

    Article  Google Scholar 

  • Horng, T.-L.: Analyses of vibration responses on nanoscale processing in a liquid using tapping-mode atomic force microscopy. Appl. Surf. Sci. 256, 311–317 (2009)

    Article  Google Scholar 

  • Jalili, N., Laxminarayana, K.: A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronic 14, 907–945 (2004)

    Article  Google Scholar 

  • Korayem, M.H., Ghaderi, R.: Sensitivity analysis of nonlinear vibration of AFM piezoelectric MC in liquid. Int. J. Mech. Mater. Des. 10(2), 121–131 (2014)

    Article  Google Scholar 

  • Korayem, M.H., Rastegar, Z., Taheri, M.: Sensitivity analysis of nano-contact mechanics models in manipulation of biological cell. Nanosci. Nanotechnol. 2(3), 49–56 (2012)

    Article  Google Scholar 

  • Lee, C.Y., Lee, G.W.: Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation. J. Micromech. Microeng. 13, 620–627 (2003)

    Article  Google Scholar 

  • Lee, H.-W., Chang, W.-J., Yang, Y-Ch.: Flexural sensitivity of a V-shaped cantilever of an atomic force microscope. Mater. Chem. Phys. 92, 438–442 (2005)

    Article  Google Scholar 

  • Liu, K., Ji, H.F.: Detection of Pb2 + using a hydrogel swelling MC sensor. Anal. Sci. 20, 9–11 (2004)

    Article  Google Scholar 

  • Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven MCs. Int. J. Non-Linear Mech. 42, 577–587 (2007)

    Article  Google Scholar 

  • Moosapour, M., Hajabasi, M.A., Ehteshami, H.: Frequency and sensitivity analysis of atomic force microscope (AFM) cantilever considering coupled flexural–torsional vibrations. Dig. J. Nanotechnol. Biotechnol. 7(3), 1103–1115 (2012)

    Google Scholar 

  • Reddy, J.N.: An Introduction to the Finite Element Method. McGraw-Hill, New York (1993)

    Google Scholar 

  • Salehi-Khojin, A., Bashash, S., Jalili, N.: Modeling and experimental vibration analysis of nanomechanical cantilever active probes. J. Micromech. Microeng. 18, 085008–085018 (2008)

    Article  Google Scholar 

  • Saltelli, K., Chan, E.M.: Sensitivity Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  • Sitti, M.: Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME Trans. Mechatron. 5, 199–211 (2000)

    Article  Google Scholar 

  • Su, M., Li, S., Dravid, V.: MC resonance-based DNA detection with nanoparticle probes. Appl. Phys. Lett. 82(20), 3562–3564 (2003)

    Article  Google Scholar 

  • Wolf, K., Gottlieb, O.: Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer. J. Appl. Phys. 91(7), 4701–4709 (2002)

    Article  Google Scholar 

  • Zhang, Y., Ji, H.F., Snow, D., Sterling, R., Brown, G.M.: A pH sensor based on a MC coated with intelligent hydrogel. Instrum. Sci. Technol. 32(4), 361–369 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghaderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, R. Dynamic modeling and vibration analysis of piezoelectric microcantilever in AFM application. Int J Mech Mater Des 12, 413–425 (2016). https://doi.org/10.1007/s10999-015-9309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-015-9309-y

Keywords

Navigation