Skip to main content
Log in

Design and analysis of piezoelectric actuator for micro gripper

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Piezoelectric actuator can be used for handling the miniature parts through a micro gripper for micro assembly where study of stable displacement and force characteristics with voltage are important. For obtaining these behaviors, electromechanical characterization of piezo actuator is required. In this paper, design and analysis of piezoelectric actuator for micro gripper is carried out by using combination of two piezo ceramic layers and one resistive layer between them where the voltage (±60 V) is supplied and controlled through a proportional-integral-derivative (PID) controller. Experimentally, it is found that the piezoelectric actuator produces maximum deflection up to 1.5 mm and generates maximum force up to 0.203 N. A piezoelectric actuator based micro gripper is developed for demonstrating the micro assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Adriaens, H.J.M.T.A., Koning, W.L.D., Banning, R.: Modeling of piezoelectric actuators. IEEE/ASME Trans. Mechatron. 5(4), 331–334 (2000)

    Article  Google Scholar 

  • Al-Wahab, M.A., Kasper, R., Kostadinov, K., Chakarov, D., Tiankov, T.: Structured piezo-ceramic mechatronic handling devices for micro and nano manipulations. In: 5th International Symposium on Mechatronics and its Applications (ISM08), Amman, 27–29 May, 2008, pp. 1–6

  • Badr, B.M., Ali, W.G.: Nano positioning fuzzy control for piezoelectric actuators. Int. J. Eng. Tech. (IJET-IJENS) 10(1), 70–74 (2010)

    Google Scholar 

  • Bergander, A., Driesen, W., Varidel, T., Breguet, J.M.: Development of miniature manipulators for applications in biology and nanotechnologies. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, 3–7 November, 2003, pp. 11–35

  • Boudaoud, M., Haddab, Y., Le Gorrec, Y., Lutz, P.: Noise characterization in millimeter sized micro manipulation systems. Mechatronics 21(6), 1087–1097 (2011)

    Article  Google Scholar 

  • Campolo, D., Sitti, M., Fearing, R.S.: Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(1), 1–10 (2003)

    Article  Google Scholar 

  • Causey, G.: Guidelines for the design of robotic gripping systems. Assem. Autom. 23(1), 18–28 (2003)

    Article  Google Scholar 

  • Chen, Q., Yao, D.J., Kim, C.J., Carman G.P.: Mesoscale actuator device with micro interlocking mechanism. In: The Eleventh Annual International Workshop on Micro Electro Mechanical Systems (MEMS 98), 25–29 January, 1998, pp. 384–389

  • Dong, W., Lu, X., Liu, M., Cui, Y., Wang, J.: Measurement on the actuating and sensing capability of a PZT micro cantilever. Meas. Sci. Technol. 18, 601–608 (2007)

    Article  Google Scholar 

  • Grossard, M., Rotinat-Libersa, C., Chaillet, N., Perrot, Y.: Flexible building blocks method for the optimal design of compliant mechanisms using piezoelectric material. In: 12th IFToMM World Congress, Besançon, 18–21 June, 2007

  • Grossard, M., Boukallel, M., Chaillet, N., Rotinat-Libersa, C.: Modeling and robust control strategy for a control-optimized piezoelectric micro gripper. IEEE/ASME Trans. Mechatron. 16(4), 674–683 (2011)

    Article  Google Scholar 

  • Goldfarb, M., Celanovic, N.: Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst. 17(3), 69–79 (1997)

    Article  Google Scholar 

  • Goldfarb, M., Celanovic, N.: A flexure-based gripper for small-scale manipulation. Robotica 17, 181–187 (1999)

    Article  Google Scholar 

  • Go¨tze, H., Pagel, L.: Development of a micro-manipulator based on piezoelectric-technology. Microelectron. Eng. 84, 1333–1336 (2007)

    Article  Google Scholar 

  • Hötzendorfer, H., Giouroudi, I., Bou, S., Ferros M.: Evaluation of different control algorithms for a micromanipulation system. In Int. Conf. Engineering and Mathematics, Spain, 10–11 July, 2006, pp. 287–294

  • Hristov, K., Ionescu, F., Kostadinov, K.: Modeling, procedure and development of piezo actuated mechatronic systems. J. Probl. Eng. Cybern. Robot. 53, 76–79 (2002)

    Google Scholar 

  • Hunstig, M., Hemsel, T.: Parameter identification and model validation for the piezoelectric actuator in an inertia motor. J. Korean Phys. Soc. 57(4), 952–954 (2010)

    Google Scholar 

  • Ivan, I.A., Rakotondrabe, M., Lutz, P., Chaillet, N.: Self-sensing measurement in piezoelectric cantilevered actuators for micromanipulation and micro assembly contexts. In: Clévy, C., et al. (eds.) Signal Measurement and Estimation Techniques for Micro and Nanotechnology, pp. 29–69. Springer, New York (2011). doi:10.1007/978-1-4419-9946-7

    Chapter  Google Scholar 

  • Jain, R.K., Patkar, U.S., Majumder, S.: Micro gripper for micro manipulation using IPMCs. J. Sci. Ind. Res. 68, 23–28 (2009)

    Google Scholar 

  • Jain, R.K., Majumder, S., Dutta, A.: Multiple path generation by a flexible 4-bar mechanism using ionic polymer metal composite. J. Intell. Mater. Syst. Struct. 23(12), 1379–1393 (2012a)

    Article  Google Scholar 

  • Jain, R.K., Majumder, S., Dutta, A.: Micro assembly by an IPMC based flexible 4-bar mechanism. Smart Mater. Struct. 21(7), 075004 (2012b). doi:10.1088/0964-1726/21/7/075004

    Article  Google Scholar 

  • Jain, R.K., Datta, S., Majumder, S.: Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics 23(3), 381–394 (2013)

    Article  Google Scholar 

  • Jang, M.J., Chen, C.L., Lee, J.R.: Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis. In: IEEE Int. Conf. on Syst. and Sig., 2005, pp. 676–681

  • Khadraoui, S., Rakotondrabe, M., Lutz, P.: PID-Structured controller design for interval systems: Application to piezoelectric micro actuators. In: American Control Conference (ACC’11), San Francisco, 29 June–1 July, 2011a, pp. 3477–3482

  • Khadraoui, S., Rakotondrabe, M., Lutz, P.: Modeling and robust deflection control of piezoelectric micro actuators modeled by zero-order numerator interval system. In: 18th IFAC World Congress, Milano, 28 August–2 September, 2011b, pp. 9763–9768

  • Kim, D.H., Lee, M.G., Kim, B., Sun, Y.: A super elastic alloy micro gripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater. Struct. 14, 1265–1272 (2005)

    Article  Google Scholar 

  • Ladjal, H., Hanus, J.L., Ferreira, A.: H robustification control of existing piezoelectric stack actuated nano manipulators. In: International Conference on Robotics and Automation (ICRA), Kobe, 12–17 May, 2009, pp. 3353–3358

  • Li, J., Yang, L.: Adaptive PI-based sliding mode control for nano positioning of piezoelectric actuators. Math. Probl. Eng. (2014). doi:10.1155/2014/357864

    Google Scholar 

  • Liaw, H.C., Shirinzadeh, B.: Robust adaptive constrained motion tracking control of piezo-actuated flexure-based mechanisms for micro/nano manipulation. IEEE Trans. Ind. Electron. 58(4), 1406–1415 (2011)

    Article  Google Scholar 

  • Molfino, R., Razzoli, R. P., Zoppi, M.: A low-cost reconfigurable gripper for assembly and disassembly tasks in white industry. In: 8th International IFAC Symposium on Robot Control, Santa Cristina Convent, vol. 8, pp. 498–505 (2006)

  • Moskalik, A.J., Brei, D.: Force-deflection behavior of piezoelectric C-block actuator arrays. Smart Mater. Struct. 8, 531–543 (1999)

    Article  Google Scholar 

  • Nishida, G., Takagi, K., Maschke, B., Osada, T.: Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Eng. Pract. 19(4), 321–334 (2011)

    Article  Google Scholar 

  • Noori, H., Karimi, E.: Effect of input voltage frequency on micro-gripper with piezoelectric actuator. In: RSI/ISM International Conference on Robotics and Mechatronics, Tehran, 13–15 February, 2013

  • Ogata, K.: Modern Control Engineering. PHI Learning Pvt. Ltd., New Delhi (2009)

    Google Scholar 

  • Park, J.H., Jeong, S.C., Koo, J.H., Jung, H.Y., Lee, S.M.: Integral tracking control for a piezoelectric actuator system. World Acad. Sci. Eng. Technol. 63, 343–346 (2012)

    Google Scholar 

  • Pérez, R., Agnus, J., Clévy, C., Hubert, A., Chaillet, N.: Modeling, fabrication, and validation of a high-performance 2-DOF piezo actuator for micromanipulation. IEEE/ASME Trans. Mechatron. 10(2), 161–171 (2005)

    Article  Google Scholar 

  • Pérez, R., Chaillet, N.: Fabrication, modeling and integration of a silicon technology force sensor in a piezoelectric micromanipulator. Sens. Actuators A 128, 367–375 (2006)

    Article  Google Scholar 

  • Popa, D.O., Kang, B.H., Wen, J.T.: Dynamic modeling and input shaping of thermal bimorph MEMS actuators. In: IEEE International Conference on Robotics and Automation (ICRA), Taipei, 14–19 September, 2003, pp. 1470–1474

  • Rakotondrabe, M., Ivan, I.A.: Development and force/position control of a new hybrid thermo-piezoelectric micro gripper dedicated to micromanipulation tasks. IEEE Trans. Autom. Sci. Eng. 8(4), 824–834 (2011)

    Article  Google Scholar 

  • Rakotondrabe, M., Haddab, Y., Lutz P.: Nonlinear modelling and estimation of force in a piezoelectric cantilever. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Zurich, 4–7 September, 2007, pp. 1–6

  • Rakotondrabe, M., Agnus, J., Rabenorosoa, K., Chaillet, N.: Characterization, modeling and robust control of a nonlinear 2-DOF piezo cantilever for micromanipulation/micro assembly. In: IEEE International Conference on Robotics and Intelligent Systems (IROS), St. Louis, MO, 11–15 October, 2009, pp. 767–774

  • Roche, P.E., Hansson, A., Yakub, B.T.K.: Control of a drop-ejector used as photo-resist dispenser. In: SPIE Conference on Mathematics and Control in Smart Structures, San Diego, CA, 01 March, 1998, pp. 446–454

  • Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: I. Fundamental. Smart Mater. Struct. 10, 819–833 (2001)

    Article  Google Scholar 

  • Sitti, M., Campolo, D., Yan, J., Fearing, R.S.: Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms. IEEE International Conference on Robotics and Automation (ICRA), Seoul, 21–26 May 2001, pp. 3839–3846

  • Sun, L., Ru, C., Rong, W.: Hysteresis compensation for piezoelectric actuator based on adaptive inverse control. In: 5th World Congress Intelligent Control and Automation, Hangzhou, 15–19 June, 2004, pp. 5036–5039

  • Sung, B.J., Lee, E.W., Kim, I.S.: Displacement control of piezoelectric actuator using the PID controller and system identification method. In: Joint International Conference on Power System Technology and IEEE Power India Conference (POWERCON 2008), New Delhi, 12–15 October, 2008, pp. 1–7

  • Susanto, K., Yang, B.: Modeling and design of a piezoelectric forceps actuator for meso/micro grasping. J. Med. Devices 1, 30–37 (2007)

    Article  Google Scholar 

  • Tamadazte, B., Piat, N.L., Dembélé, S.: Robotic micromanipulation and micro assembly using mono-view and multi-scale visual servoing. IEEE/ASME Trans. Mechatron. 16(2), 277–287 (2011)

    Article  Google Scholar 

  • Troisfontaine, N., Bidaud, P., Morel, G.: A new inter-phalangeal actuator for dexterous micro-grippers. In: IEEE International Conference on Robotics and Automation. Albuquerque, April 1997, pp. 1773–1778

  • Würtz, T., Janocha, H., Ressing, M.: Compact lightweight power amplifier for piezoelectric actuators. In: 11th International Conference on New Actuators. Bremen, 9–11 June, 2008, pp. 546–549

  • Yeh, T.J., Lu, S.W., Wu, T.Y.: Modeling and identification of hysteresis in piezoelectric actuators. J. Dyn. Syst. Meas. Control 128, 189–196 (2006)

    Article  Google Scholar 

  • Zareinejad, M., Rezaei, S.M., Ghidary, S.S., Abdullah, A.: Precision control of a piezo-actuated micro telemanipulation system. Int. J. Precis. Eng. Manuf. 17, 1–10 (2010)

    Google Scholar 

  • Zhang, Y.L., Han, M.L., Yu, M.Y., Shee, C.Y., Ang, W.T.: Automatic hysteresis modeling of piezoelectric micromanipulator in vision-guided micromanipulation systems. IEEE/ASME Trans. Mechatron. 17(3), 547–553 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-CMERI, Durgapur, West Bengal, India for granting the permission to publish this paper. This work is the part of project entitled “Development of piezo actuator based micro manipulation system” under SINP on “Intelligent Devices and Smart Actuator” (Project No. ESC-203/10) for 12th five year plan which is financially supported by Council of Scientific Industrial Research (CSIR), Govt. of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kant Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R.K., Majumder, S. & Ghosh, B. Design and analysis of piezoelectric actuator for micro gripper. Int J Mech Mater Des 11, 253–276 (2015). https://doi.org/10.1007/s10999-014-9264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9264-z

Keywords

Navigation