Skip to main content
Log in

Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The effect of hygrothermal conditions on the antisymmetric cross-ply laminates has been investigated using a unified shear deformation plate theory. The present plate theory enables the trial and testing of different through-the-thickness transverse shear-deformation distributions and, among them, strain distributions do not involve the undesirable implications of the transverse shear correction factors. The differential equations of laminated plates whose deformations are governed by either the shear deformation theories or the classical one are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. A wide variety of results is presented for the static response of simply supported rectangular plates under non-uniform sinusoidal hygrothermal/thermal loadings. The influence of material anisotropy, aspect ratio, side-to-thickness ratio, thermal expansion coefficients ratio and stacking sequence on the hygrothermally induced response is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ameur, M., Tounsi, A., Benyoucef, S., Bachir Bouiadjra, M., Adda Bedia, E.A.: Stress analysis of steel beams strengthened with a bonded hygrothermal aged composite plate. Int. J. Mech. Mater. Des. 5, 143–156 (2009)

    Article  Google Scholar 

  • Atmane, H.A., Tounsi, A., Mechab, I., Adda Bedia, E.: Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory. Int. J. Mech. Mater. Des. 6, 113–121 (2010)

    Article  Google Scholar 

  • Bahrami, A., Nosier, A.: Interlaminar hygrothermal stresses in laminated plates. Int. J. Solids Struct. 44, 8119–8142 (2007)

    Article  MATH  Google Scholar 

  • Benkhedda, A., Tounsi, A., Adda Bedia, E.A.: Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates. Compos. Struct. 82, 623–635 (2008)

    Google Scholar 

  • Carrera, E.: Historical review of zig-zag theories for multilayered plates and shells. Appl. Mech. Rev. 56, 301–329 (2003)

    Article  Google Scholar 

  • Jacquemin, F., Vautrin, A.: A closed-form solution for the internal stresses in thick composite cylinders induced by cyclical environmental conditions. Compos. Struct. 58, 1–9 (2002)

    Article  Google Scholar 

  • Lee, S.Y., Chou, C.J., Jang, J.L., Lim, J.S.: Hygrothermal effects on the linear and nonlinear analysis of symmetric angle-ply laminated plates. Compos. Struct. 21, 41–48 (1992)

    Article  Google Scholar 

  • Pipes, R.B., Vinson, J.R., Chou, T.W.: On the hygrothermal response of laminated composite systems. J. Compos. Mater. 10, 129–148 (1976)

    Article  Google Scholar 

  • Rao, V.V.S., Sinha, P.K.: Bending characteristic of thick multidirectional composite plates under hygrothermal environment. Reinf. Plast. Compos. 23, 1481–1495 (2004)

    Article  Google Scholar 

  • Reddy, J.N.: A generalization of two-dimensional theories of laminated composite laminates. Commun. Appl. Numer. Method 3, 173–180 (1987)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  • Sai Ram, K.S., Sinha, P.K.: Hygrothermal effects on the bending characteristics on laminated composite plates. Comput. Struct. 40, 1009–1015 (1991)

    Article  Google Scholar 

  • Sai Ram, K.S., Sinha, P.K.: Hygrothermal effects on the free vibration of laminated composite plates. J. Sound Vib. 158, 133–148 (1992)

    Article  MATH  Google Scholar 

  • Wang, X., Dong, K., Wang, X.Y.: Hygrothermal effect on dynamic interlaminar stresses in laminated plates with piezoelectric actuators. Compos. Struct. 71, 220–228 (2005)

    Article  Google Scholar 

  • Whitney, J.M., Ashton, J.E.: Effect of environment on the elastic response of layered composite plates. AIAA J. 9, 1708–1713 (1971)

    Article  Google Scholar 

  • Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 1: deflection and stresses. Int. J. Solids Struct. 42, 5224–5242 (2005a)

    Article  MATH  Google Scholar 

  • Zenkour, A.M., Alghamdi, N.A.: Thermoelastic bending analysis of functionally graded sandwich plates. J. Mater. Sci. 43, 2574–2589 (2008)

    Article  Google Scholar 

  • Zenkour, A.M., Allam, M.N.M., Radwan, A.F.: Bending of cross-ply laminated plates resting on elastic foundations under thermo-mechanical loading. Int. J. Mech. Mater. Des. 9, 239–251 (2013)

    Article  Google Scholar 

  • Zenkour, A.M.: Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading. Compos. Struct. 65, 367–379 (2004a)

    Article  Google Scholar 

  • Zenkour, A.M.: Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 77, 197–214 (2007)

    Article  MATH  Google Scholar 

  • Zenkour, A.M.: Buckling of fiber-reinforced viscoelastic composite plates using various plate theories. J. Eng. Math. 50, 75–93 (2004b)

    Article  MATH  Google Scholar 

  • Zenkour, A.M.: Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 30, 67–84 (2006)

    Article  MATH  Google Scholar 

  • Zenkour, A.M.: On vibration of functionally graded plates according to a refined trigonometric plate theory. Int. J. Struct. Stab. Dyn. 5, 279–297 (2005b)

    Article  MATH  MathSciNet  Google Scholar 

  • Zenkour, A.M.: Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech. 171, 171–187 (2004c)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Appendices

Appendix 1

The elements of the symmetric matrix [L], for RPT, are given by:

$$ \begin{aligned} L_{11} & = A_{11} d_{11} + 2A_{16} d_{12} + A_{66} d_{22} , \\ L_{12} & = A_{16} d_{11} + (A_{12} + A_{66} )d_{12} + A_{26} d_{22} , \\ L_{13} & = - B_{11} d_{111} - 3B_{16} d_{112} - (B_{12} + 2B_{66} )d_{122} - B_{26} d_{222} , \\ L_{14} & = B_{11}^{a} d_{11} + 2B_{16}^{a} d_{12} + B_{66}^{a} d_{22} , \\ L_{15} & = B_{16}^{a} d_{11} + (B_{12}^{a} + B_{66}^{a} )d_{12} + B_{26}^{a} d_{22} , \\ L_{16} & = L_{13}^{a} d_{1} + L_{63}^{a} d_{2} , \\ L_{22} & = A_{66} d_{11} + 2A_{26} d_{12} + A_{22} d_{22} , \\ L_{23} & = - B_{16} d_{111} - (B_{12} + 2B_{66} )d_{112} - 3B_{26} d_{122} - B_{22} d_{222} , \\ L_{24} & = L_{15} , \\ L_{25} & = B_{66}^{a} d_{11} + 2B_{26}^{a} d_{12} + B_{22}^{a} d_{22} , \\ L_{26} & = L_{63}^{a} d_{1} + L_{23}^{a} d_{2} , \\ L_{33} & = D_{11} d_{1111} + 4D_{16} d_{1112} + 2(D_{12} + 2D_{66} )d_{1122} + 4D_{26} d_{1222} + D_{22} d_{2222} , \\ L_{34} & = - D_{11}^{a} d_{111} - 3D_{16}^{a} d_{112} - (D_{12}^{a} + 2D_{66}^{a} )d_{122} - D_{26}^{a} d_{222} , \\ L_{35} & = - D_{16}^{a} d_{111} - (D_{12}^{a} + 2D_{66}^{a} )d_{112} - 3D_{26}^{a} d_{122} - D_{22}^{a} d_{222} , \\ L_{36} & = - (\bar{L}_{13} d_{11} + 2\bar{L}_{63} d_{12} + \bar{L}_{23} d_{22} ), \\ L_{44} & = F_{11}^{a} d_{11} + 2F_{16}^{a} d_{12} + F_{66}^{a} d_{22} - A_{55}^{a} , \\ L_{45} & = F_{16}^{a} d_{11} + (F_{12}^{a} + F_{66}^{a} )d_{12} + F_{26}^{a} d_{22} - A_{45}^{a} , \\ L_{46} & = (\hat{L}_{13} - A_{55}^{a} )d_{1} + (\hat{L}_{63} - A_{45}^{a} )d_{2} , \\ L_{55} & = F_{66}^{a} d_{11} + 2F_{26}^{a} d_{12} + F_{22}^{a} d_{22} - A_{44}^{a} , \\ L_{56} & = (\hat{L}_{63} - A_{45}^{a} )d_{1} + (\hat{L}_{23} - A_{44}^{a} )d_{2} , \\ L_{66} & = - (A_{55}^{a} d_{1} + 2A_{45}^{a} d_{12} + A_{44}^{a} d_{22} - \tilde{L}_{33} ). \\ \end{aligned} $$

For the FPT, HPT and SPT, the components of [L] are the same as given above for the RPT except L i6 = 0(i = 1, 2, …, 6). However, for the CPT, the components of [L] are reduced to be L ij (ij = 1, 2, 3).

Appendix 2

The transformation formulae for the stiffness c (k) ij are

$$ \begin{aligned} \left\{ \begin{gathered} c_{11} \hfill \\ c_{12} \hfill \\ c_{22} \hfill \\ c_{16} \hfill \\ c_{26} \hfill \\ c_{66} \hfill \\ \end{gathered} \right\}^{(k)} & = \left[ {\begin{array}{*{20}c} {c^{4} } & {2c^{2} s^{2} } & {s^{4} } & {4c^{2} s^{2} } \\ {c^{2} s^{2} } & {c^{4} + s^{4} } & {c^{2} s^{2} } & { - 4c^{2} s^{2} } \\ {s^{4} } & {2c^{2} s^{2} } & {c^{4} } & {4c^{2} s^{2} } \\ {c^{3} s} & {cs^{3} - c^{3} s} & { - cs^{3} } & { - 2cs\left( {c^{2} - s^{2} } \right)} \\ {cs^{3} } & {c^{3} s - cs^{3} } & { - c^{3} s} & {2cs\left( {c^{2} - s^{2} } \right)} \\ {c^{2} s^{2} } & { - 2c^{2} s^{2} } & {c^{2} s^{2} } & {\left( {c^{2} - s^{2} } \right)^{2} } \\ \end{array} } \right]\left\{ \begin{gathered} c_{11} \hfill \\ c_{12} \hfill \\ c_{22} \hfill \\ c_{66} \hfill \\ \end{gathered} \right\}, \\ \left\{ \begin{gathered} c_{44} \hfill \\ c_{45} \hfill \\ c_{55} \hfill \\ \end{gathered} \right\}^{(k)} & = \left[ {\begin{array}{*{20}c} {c^{2} } & {s^{2} } \\ { - cs} & {cs} \\ {s^{2} } & {c^{2} } \\ \end{array} } \right]\left\{ \begin{gathered} c_{44} \hfill \\ c_{55} \hfill \\ \end{gathered} \right\},\quad \left\{ \begin{gathered} c_{13} \hfill \\ c_{23} \hfill \\ c_{63} \hfill \\ \end{gathered} \right\}^{(k)} = \left[ {\begin{array}{*{20}c} {c^{2} } & {s^{2} } \\ {s^{2} } & {c^{2} } \\ {sc} & { - sc} \\ \end{array} } \right]\left\{ \begin{gathered} c_{13} \hfill \\ c_{23} \hfill \\ \end{gathered} \right\},\quad c_{33}^{(k)} = c_{33} , \\ \end{aligned} $$

where c = cos θ k s = sin θ k and c ij are the material stiffness of the lamina. For RPT one has

$$ \begin{aligned} c_{11} & = \frac{{E_{x} (1 - \nu_{yz} \nu_{zy} )}}{\varDelta },\quad c_{12} = \frac{{E_{x} (\nu_{yx} + \nu_{yz} \nu_{zx} )}}{\varDelta },\quad c_{13} = \frac{{E_{x} (\nu_{zx} + \nu_{yx} \nu_{zy} )}}{\varDelta }, \\ c_{22} & = \frac{{E_{y} (1 - \nu_{xz} \nu_{zx} )}}{\varDelta },\quad c_{23} = \frac{{E_{y} (\nu_{zy} + \nu_{xy} \nu_{zx} )}}{\varDelta },\quad c_{33} = \frac{{E_{z} (1 - \nu_{xy} \nu_{yx} )}}{\varDelta }, \\ c_{44} & = G_{yz} ,\quad c_{55} = G_{xz} ,\quad c_{66} = G_{xy} . \\ \end{aligned} $$

in which Δ = 1 − ν xy ν yx  − ν yz ν zy  − ν zx ν xz  − 2ν yx ν xz ν zy E i are Young’s moduli in the material principal directions, ν ij are Poisson’s ratios and G ij are shear moduli. The material stiffness for the CPT and other shear deformation plate theories may be reduced to:

$$ \begin{aligned} c_{11} & = \frac{{E_{x} }}{{1 - \nu_{xy} \nu_{yx} }},\quad c_{12} = \frac{{\nu_{xy} E_{y} }}{{1 - \nu_{xy} \nu_{yx} }} = \frac{{\nu_{yx} E_{x} }}{{1 - \nu_{xy} \nu_{yx} }},\quad c_{22} = \frac{{E_{y} }}{{1 - \nu_{xy} \nu_{yx} }},\quad c_{13} = \frac{{\nu_{xz} E_{z} }}{{1 - \nu_{xy} \nu_{yx} }}, \\ c_{23} & = \frac{{\nu_{yz} E_{z} }}{{1 - \nu_{xy} \nu_{yx} }},\quad c_{33} = \frac{{E_{z} }}{{1 - \nu_{xy} \nu_{yx} }},\quad c_{44} = G_{yz} ,\quad c_{55} = G_{xz} ,\quad c_{66} = G_{xy} . \\ \end{aligned} $$

Appendix 3

The components of the generalized force vector {F} are given by

$$ \begin{aligned} F_{1}^{ij} & = \lambda \left( {A_{1}^{T} \bar{T}_{1} + B_{1}^{T} \bar{T}_{2} + {}^{a}B_{1}^{T} \bar{T}_{3} + a_{1}^{T} \bar{C}_{1} + b_{1}^{T} \bar{C}_{2} + {}^{a}b_{1}^{T} \bar{C}_{3} } \right), \\ F_{2}^{ij} & = \mu \left( {A_{2}^{T} \bar{T}_{1} + B_{2}^{T} \bar{T}_{2} + {}^{a}B_{2}^{T} \bar{T}_{3} + a_{2}^{T} \bar{C}_{1} + b_{2}^{T} \bar{C}_{2} + {}^{a}b_{2}^{T} \bar{C}_{3} } \right), \\ F_{3}^{ij} & = - q_{0} - h\left[ {\left( {B_{1}^{T} \lambda^{2} + B_{2}^{T} \mu^{2} } \right)\bar{T}_{1} + \left( {D_{1}^{T} \lambda^{2} + D_{2}^{T} \mu^{2} } \right)\bar{T}_{2} + \left( {{}^{a}D_{1}^{T} \lambda^{2} + {}^{a}D_{2}^{T} \mu^{2} } \right)\bar{T}_{3} } \right. \\ & \left. { + \left( {b_{1}^{T} \lambda^{2} + b_{2}^{T} \mu^{2} } \right)\bar{C}_{1} + \left( {d_{1}^{T} \lambda^{2} + d_{2}^{T} \mu^{2} } \right)\bar{C}_{2} + \left( {{}^{a}d_{1}^{T} \lambda^{2} + {}^{a}d_{2}^{T} \mu^{2} } \right)\bar{C}_{3} } \right], \\ F_{4}^{ij} & = h\lambda \left( {{}^{a}B_{1}^{T} \bar{T}_{1} + {}^{a}D_{1}^{T} \bar{T}_{2} + {}^{a}F_{1}^{T} \bar{T}_{3} + {}^{a}b_{1}^{T} \bar{C}_{1} + {}^{a}d_{1}^{T} \bar{C}_{2} + {}^{a}f_{1}^{T} \bar{C}_{3} } \right), \\ F_{5}^{ij} & = h\mu \left( {{}^{a}B_{2}^{T} \bar{T}_{1} + {}^{a}D_{2}^{T} \bar{T}_{2} + {}^{a}F_{2}^{T} \bar{T}_{3} + {}^{a}B_{2}^{T} \bar{C}_{1} + {}^{a}D_{2}^{T} \bar{C}_{2} + {}^{a}F_{2}^{T} \bar{C}_{3} } \right), \\ F_{6}^{ij} & = - h\left( {L^{T} \bar{T}_{1} + {}^{a}L^{T} \bar{T}_{2} + {}^{b}L^{T} \bar{T}_{3} + l^{T} \bar{C}_{1} + {}^{a}l^{T} \bar{C}_{2} + {}^{b}l^{T} \bar{C}_{3} } \right), \\ \end{aligned} $$

where

$$ \begin{aligned} \{ A_{i}^{T} ,B_{i}^{T} ,D_{i}^{T} \} & = \sum\limits_{k = 1}^{n} {\int\limits_{{z_{k} }}^{{z_{k + 1} }} {(c_{1i}^{(k)} \alpha_{x} + c_{i2}^{(k)} \alpha_{y} )\{ 1,\bar{z},\bar{z}^{2} \} {\text{d}}z,} } \quad (i = 1,2), \\ \{ a_{i}^{T} ,b_{i}^{T} ,d_{i}^{T} \} & = \sum\limits_{k = 1}^{n} {\int\limits_{{z_{k} }}^{{z_{k + 1} }} {(c_{1i}^{(k)} \beta_{x} + c_{i2}^{(k)} \beta_{y} )\{ 1,\bar{z},\bar{z}^{2} \} {\text{d}}z,} } \quad (i = 1,2), \\ \left\{ {{}^{a}B_{i}^{T} ,{}^{a}D_{i}^{T} ,{}^{a}F_{i}^{T} } \right\} & = \sum\limits_{k = 1}^{n} {\int\limits_{{z_{k} }}^{{z_{k + 1} }} {\left( {c_{1i}^{(k)} \alpha_{x} + c_{i2}^{(k)} \alpha_{y} } \right)\bar{\varPsi }(z)\{ 1,\bar{z},\bar{\varPsi }(z)\} {\text{d}}z,} } \quad (i = 1,2), \\ \left\{ {{}^{a}b_{i}^{T} ,{}^{a}d_{i}^{T} ,{}^{a}f_{i}^{T} } \right\} & = \sum\limits_{k = 1}^{n} {\int\limits_{{z_{k} }}^{{z_{k + 1} }} {\left( {c_{1i}^{(k)} \beta_{x} + c_{i2}^{(k)} \beta_{y} } \right)\bar{\varPsi }(z)\{ 1,\bar{z},\bar{\varPsi }(z)\} {\text{d}}z,} } \quad (i = 1,2), \\ \left\{ {L^{T} ,{}^{a}L^{T} ,{}^{b}L^{T} } \right\} & = \sum\limits_{k = 1}^{n} {\int\limits_{{z_{k} }}^{{z_{k + 1} }} {\left( {c_{13}^{(k)} \alpha_{x} + c_{23}^{(k)} \alpha_{y} } \right)\bar{\varPsi }^{\prime\prime}(z)\{ 1,\bar{z},\bar{\varPsi }(z)\} {\text{d}}z,} } \\ \left\{ {l^{T} ,{}^{a}l^{T} ,{}^{b}l^{T} } \right\} & = \sum\limits_{k = 1}^{n} {\int\limits_{{z_{k} }}^{{z_{k + 1} }} {\left( {c_{13}^{(k)} \beta_{x} + c_{23}^{(k)} \beta_{y} } \right)\bar{\varPsi }^{\prime\prime}(z)\{ 1,\bar{z},\bar{\varPsi }(z)\} {\rm dz},} } \\ \end{aligned} $$

in which \( \bar{z} = z/h,\quad \bar{\varPsi }(z) = \varPsi (z)/h \), and \( \bar{\varPsi }^{\prime\prime}(z) = \varPsi^{\prime\prime}(z)/h \).

The elements of the symmetric matrix [C], for RPT, are given by:

$$ \begin{aligned} C_{11} & = - A_{11} \lambda^{2} - A_{66} \mu^{2} , \\ C_{12} & = - (A_{12} + A_{66} )\lambda \mu , \\ C_{13} & = \lambda [B_{11} \lambda^{2} + (B_{12} + 2B_{66} )\mu^{2} ], \\ C_{14} & = - B_{11}^{a} \lambda^{2} - B_{66}^{a} \mu^{2} , \\ C_{15} & = - (B_{12}^{a} + B_{66}^{a} )\lambda \mu , \\ C_{16} & = L_{13}^{a} \lambda , \\ C_{22} & = - A_{66} \lambda^{2} - A_{22} \mu^{2} , \\ C_{23} & = \mu [(B_{12} + 2B_{66} )\lambda^{2} + B_{22} \mu^{2} ], \\ C_{24} & = C_{15} , \\ C_{25} & = - B_{66}^{a} \lambda^{2} - B_{22}^{a} \mu^{2} , \\ C_{26} & = L_{23}^{a} \mu , \\ C_{33} & = - D_{11} \lambda^{4} - 2(D_{12} + 2D_{66} )\lambda^{2} \mu^{2} - D_{22} \mu^{4} , \\ C_{34} & = \lambda [D_{11}^{a} \lambda^{2} + (D_{12}^{a} + 2D_{66}^{a} )\mu^{2} ], \\ C_{35} & = \mu [(D_{12}^{a} + 2D_{66}^{a} )\lambda^{2} + D_{22}^{a} \mu^{2} ], \\ C_{36} & = - (\bar{L}_{13} \lambda^{2} + \bar{L}_{23} \mu^{2} ), \\ C_{44} & = - (F_{11}^{a} \lambda^{2} + F_{66}^{a} \mu^{2} + A_{55}^{a} ), \\ C_{45} & = - (F_{12}^{a} + F_{66}^{a} )\lambda \mu , \\ C_{46} & = (\hat{L}_{13} - A_{55}^{a} )\lambda , \\ C_{55} & = - F_{66}^{a} \lambda^{2} - F_{22}^{a} \mu^{2} - A_{44}^{a} , \\ C_{56} & = (\hat{L}_{23} - A_{44}^{a} )\mu , \\ C_{66} & = - (A_{55}^{a} \lambda^{2} + A_{44}^{a} \mu^{2} + \tilde{L}_{33} ). \\ \end{aligned} $$

For the FPT, HPT and SPT, the components of [C] are the same as given above for the RPT except C i6 = 0(i = 1, 2, …, 6). However, for the CPT, the components of [C] are reduced to be C ij (ij = 1, 2, 3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenkour, A.M., Mashat, D.S. & Alghanmi, R.A. Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory. Int J Mech Mater Des 10, 213–226 (2014). https://doi.org/10.1007/s10999-014-9242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9242-5

Keywords

Navigation