Skip to main content

Meso-scale stress response of thin ceramic membranes with honeycomb support


Planar solid oxide fuel cells are made up of repeating sequences of electrolytes, electrodes, seals, and current collectors. For electrochemical reasons it is best to keep the electrolyte as thin as possible. However, for electrolyte-supported cells, the thin electrolytes are susceptible to damage during production, assembly, and operation. One of the latest generation electrolytes employs a meso-scale honeycomb layer to support thin, electrochemically efficient membranes. Using finite element analysis, a two-scale model computes distributions of first principal stresses throughout a representative unit cell of the meso-scale structure. Displacement at the macro-scale is informed by meso-scale geometry via a homogenized equivalent stiffness, while the stresses at the two scales are related via a scalar magnification factor. The magnification factor is computed for a variety of geometries and loading conditions. Physical specimens are measured in tension to obtain an experimental magnification factor which agrees well with the simulations. When both the stiffness and magnification factor for a given meso-scale pattern are known, the macro-scale geometry can be analyzed without revisiting the meso-scale model, thus reducing computational time and costs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. Badding, M.E., Garner, S.M., Hagg, S.L., Ketcham, T.D., Miller, J.A., St. Julien, D.J.: Electrolyte sheet with regions of different compositions and fuel cell device including such. United States Patent: 7820332, 2010

  2. Berke, R.B., Walter, M.E.: Mechanical characterization of thin SOFC electrolytes with honeycomb support. J. Fuel Cell Sci. Technol. 10, 011001 (2013)

    Article  Google Scholar 

  3. Busso, E.P., Tkach, Y., Travis, R.P.: Thermally induced failure of multilayer ceramic structures. Philos. Mag. 81, 1979–1995 (2001)

    Article  Google Scholar 

  4. Cooley, N.: NexTech materials demonstrates world’s largest SOFC platform. Int. J. Hydrog. Energy 34, 8454 (2009)

    Article  Google Scholar 

  5. Haile, S.M.: Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003)

    Article  Google Scholar 

  6. Minh, N.Q.: Solid oxide fuel cell technology: features and applications. Solid State Ionics 174, 271–277 (2004)

    Article  Google Scholar 

  7. Ormerod, R.M.: Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003)

    Article  Google Scholar 

  8. Pindera, M.-J., Khatam, H., Drago, A.S., Bansal, Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. B 40, 349–378 (2009)

    Article  Google Scholar 

  9. Sammes, N., Smirnova, A., Vasylyev, O.: Fuel Cell Technologies: State and Perspectives, vol. 202, pp. 19–34. Springer, Dordrecht (2005)

    Book  Google Scholar 

  10. Selçuk, A., Atkinson, A.: Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 17, 1523–1532 (1997)

    Article  Google Scholar 

  11. Timurkutluk, B., Celik, S., Timurkutluk, C., Mat, M.D., Kaplan, Y.: Novel structured electrolytes for solid oxide fuel cells. J. Power Sources 213, 47–54 (2012)

    Article  Google Scholar 

  12. Wu, J., Liu, X.: Recent development of SOFC metallic interconnect. J. Mater. Sci. Technol. 26, 293–305 (2010)

    Article  Google Scholar 

  13. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40, 1907–1921 (2003)

    Article  MATH  Google Scholar 

  14. Xue, L.A., Barringer, E.A., Cable, T.L., Goettler, R.W., Kneidel, K.E.: SOFCo planar solid oxide fuel cell. Int. J. Appl. Ceram. Technol. 1, 16–22 (2004)

    Article  Google Scholar 

Download references


This work was supported by the Ohio Department of Development’s Third Frontier Fuel Cell Program. The authors would also like to thank the staff of NexTech Materials Ltd. for many helpful discussions concerning electrolyte materials and geometries.

Author information



Corresponding author

Correspondence to Mark E. Walter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berke, R.B., Walter, M.E. Meso-scale stress response of thin ceramic membranes with honeycomb support. Int J Mech Mater Des 10, 53–64 (2014).

Download citation


  • Thin ceramic membranes
  • Honeycomb support
  • Solid oxide fuel cell
  • Meso-scale finite element simulation
  • Stress magnification