Skip to main content
Log in

Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, an analysis for active constrained layer damping (ACLD) of rotating composite beams undergoing geometrically non linear vibrations has been carried out. Commercially available vertically/obliquely reinforced 1-3 piezoelectric composite (PZC) material has been used as the material of the constraining layer of the ACLD treatment. A finite element (FE) model has been derived to carry out the analysis. The substrate beam is considered thin and hence, first order shear deformation theory (FSDT) and von-Karman type nonlinear strain–displacement relations are used to derive the coupled electromechanical nonlinear FE model. The rotary effect has been suitably modelled by incorporating extensional strain energy due to centrifugal force. The Golla–Hughes–McTavish method has been employed to model the constrained viscoelastic layer of the ACLD treatment in the time domain. The numerical responses revealed that the ACLD treatment with 1-3 PZC constraining layer efficiently performs the task of active damping of geometrically nonlinear vibrations of the rotating composite beams. The effects of the fibre orientation angles of the angle-ply substrate beams and the 1-3 PZC constraining layer on the ACLD of the geometrically nonlinear vibrations have been investigated. Also, the effect of the thickness variations of the 1-3 PZC layer and the viscoelastic constrained layer on the damping characteristics of the overall rotating composite beams has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aboudi, J.: Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase composites. J. Intell. Mater. Syst. Struct. 9, 713–722 (1998)

    Article  Google Scholar 

  • Baily, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985)

    Article  Google Scholar 

  • Banerjee, J.R.: Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko Beams. J. Sound Vib. 56(2), 175–185 (2001)

    Google Scholar 

  • Baz, A., Ro, J.: Active constrained layer damping. In: Proceeding of Damping 93, San Francisco, 1993, p. IBB 1–23

  • Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126, 327–343 (1988)

    Article  Google Scholar 

  • Baz, A., Ro, J.: Vibration control of plates with active constrained layer damping. Smart Mater. Stuct. 5, 272–280 (1996)

    Article  Google Scholar 

  • Baz, A., Ro, J.: Vibration control of rotating beams with active constrained layer damping. Smart Mater. Struct. 10, 112–120 (2001)

    Article  Google Scholar 

  • Bennouna, M.M.K.: Nonlinear dynamic behaviour of a clamped–clamped beam with consideration of fatigue life, Ph.D. Thesis, University of Southampton (1982)

  • Choi, S.-C., Park, J.-S., Kim, J.-H.: Active damping of rotating thin-walled beams using MFC actuators and PVDF sensors. Compos. Struct. 76, 362–374 (2005)

    Article  Google Scholar 

  • Crawley, E.F., de Luis, J.: Use of piezoelectric actuators as element of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  • Dokainish, M.A., Rawtani, S.: Vibration analysis of rotating cantilever plates. Int. J. Numer. Methods Eng. 3, 233–248 (1971)

    Article  MATH  Google Scholar 

  • Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. J. Solids Struct. 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  • Fung, E.H.K., Yau, D.T.W.: Vibration characteristics of a rotating flexible arm with ACLD treatment. J. Sound Vib. 269, 165–182 (2003)

    Article  Google Scholar 

  • Fung, E.H.K., Zou, J.Q., Lee, H.W.J.: Lagrangian formulation of rotating beam with active constrained layer damping in time domain analysis. J. Mech. Des. 126, 359–364 (2004)

    Article  Google Scholar 

  • Golla, D.F., Hughes, P.C.: Dynamics of viscoelastic structures: a time domain, finite element formulations. ASME J. Appl. Mech. 52, 897–906 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Ha, S.K., Keilers, C., Chang, F.K.: Finite element analysis of composite structures containing piezoceramic sensors and actuators. AIAA J. 30, 772–780 (1992)

    Article  MATH  Google Scholar 

  • Hellen, L.C., Kun, L., Chung, L.C.: Piezoelectric ceramic fibre/epoxy 1–3 composite for high frequency ultrasonic transducer application. Mater. Sci. Eng. B99, 29–35 (2003)

    Google Scholar 

  • Im, S., Atluri, S.N.: Effects of a piezo-actuator on a finitely deformed beam subjected to general loading. AIAA J. 27, 1801–1807 (1989)

    Article  MATH  Google Scholar 

  • Park, J.-S., Kim, J.-H.: Design and aeroelastic analysis of active rotor blades incorporating single crystal macro fibre composite actuators. Composites B 39, 1011–1025 (2008)

    Article  Google Scholar 

  • Kumar, N., Singh, S.P.: Vibration and damping characteristics of beams with active constrained layer treatment under parametric variations. Mater. Des. 30, 4162–4174 (2009)

    Article  Google Scholar 

  • Lee, C.K.: Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. J. Acoust. Soc. Am. 87, 1144–1158 (1990)

    Article  Google Scholar 

  • Lee, S.Y., Kuo, Y.H.: Bending frequency of a rotating Timoshenko beam with general elastically restrained root. J. Sound Vib. 162, 243–250 (1993)

    Article  MATH  Google Scholar 

  • Lee, T.-S., Lin, Y.-J.: Nonlinear dynamic strain analysis on rotor blade structures with embedded piezoceramic sensors for active vibration control. Mechatronics 8(8), 805–820 (1998)

    Article  Google Scholar 

  • Li, F.M., Kishimoto, K., Wang, Y.S., Chen, Z.B., Huang, W.H.: Vibration control of beams with active constrained layer damping. Smart Mater. Struct. 17, 065036 (2008)

    Article  Google Scholar 

  • Lim, Y.H., Varadan, V.V., Varadan, K.V.: Closed looped finite element modelling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11, 89–97 (2002)

    Article  Google Scholar 

  • McTavish, D.J., Hughes, P.C.: Modelling of linear viscoelastic space structures. ASME J. Vib. Acoust. 115, 103–133 (1993)

    Article  Google Scholar 

  • Panda, S., Ray, M.C.: Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fibre-reinforced composites. Smart Mater. Struct. 17, 0250112 (2008)

    Article  Google Scholar 

  • Plunkett, R., Lee, C.T.: Length Optimization for constrained viscoelastic layer damping. J. Acoust. Soc. Am. 48, 150–161 (1970)

    Article  Google Scholar 

  • Putter, S., Manor, H.: Natural frequencies of radial rotating beams. J. Sound Vib. 56(2), 175–185 (1978)

    Article  MATH  Google Scholar 

  • Rao, J.S., Carnegie, W.: Non-linear vibration of rotating cantilever beams. Aeronaut. J. R. Aeronaut. Soc. 74, 161–165 (1970)

    Google Scholar 

  • Rao, S.S., Gupta, R.S.: Finite element vibration analysis of rotating Timoshenko Beams. J. Sound Vib. 242(1), 103–124 (2001)

    Article  MATH  Google Scholar 

  • Rao, S.S., Sunar, M.: Analysis of distributed thermopiezoelastic sensors and actuators in advanced intelligent structures. AIAA J. 31, 1280–1286 (1993)

    Article  Google Scholar 

  • Ray, M.C.: Optimal control of laminated plate with piezoelectric sensor and actuator layers. AIAA J. 36(12), 2204–2208 (1998)

    Article  Google Scholar 

  • Ray, M.C., Baz, A.: Optimization of energy dissipation of active constrained layer damping treatments of plate. J. Sound Vib. 208(3), 391–406 (1997)

    Article  Google Scholar 

  • Ray, M.C., Mallik, N.: Active control of laminated composite beams using a piezoelectric fibre reinforced composite layer. Smart Mater. Struct. 13, 146–152 (2004)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1-piezoelectric composites in active damping of smart actuators. Smart Mater. Struct. 15, 631–641 (2006)

    Article  Google Scholar 

  • Ray, M.C., Shivakumar, J.: Active constrained layer damping of geometrically non-linear transient vibration of composite plates using piezoelectric fibre reinforced composite. Thin Walled Struct. 47, 178–189 (2009)

    Article  Google Scholar 

  • Ray, M.C., Bhattacharyya, R., Samanta, B.: Finite element model for active control of intelligent structures. AIAA J. 34(9), 1885–1893 (1996)

    Article  MATH  Google Scholar 

  • Ray, M.C., Bhattacharyya, R., Samanta, B.: Exact solutions for dynamic analysis of composite structures with distributed piezoelectric sensors and actuators. Comput. Struct. 66(6), 737–743 (1998)

    Article  MATH  Google Scholar 

  • Reberio, P., Petyt, M.: Nonlinear vibration of beams with internal resonance by hierarchical finite element method. J. Sound Vib. 224(4), 591–624 (1999)

    Article  Google Scholar 

  • Reddy, J.N.: On laminated composite plate with integrated sensors and actuators. Eng. Struct. 21, 568–593 (1999)

    Article  Google Scholar 

  • Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells—Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  • Sarangi, S.K., Ray, M.C.: Smart damping of geometrically nonlinear vibration of laminated composite beams using vertically reinforced 1–3 piezoelectric composite. Smart Mater. Struct. 19, 75020 (2010)

    Article  Google Scholar 

  • Smith, W.A., Auld, B.A.: Modelling 1–3 composite piezoelectric: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(1), 40–47 (1991)

    Article  Google Scholar 

  • Vell, S.S., Batra, R.C.: Three dimensional analytical solutions for hybrid multi-layered piezoelectric plates. ASME J. Appl. Mech. 67, 558–567 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ray.

Appendices

Appendix 1

$$ \begin{aligned} \left[ {Z_{b1} } \right] & = \left[ {\begin{array}{*{20}c} z & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \begin{array}{*{20}c} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{array} } \right] ,\quad \quad \quad \left[ {Z_{b2} } \right] = \left[ {\begin{array}{*{20}c} \frac{h}{2} & {z - \frac{h}{2}} & 0 \\ 0 & 0 & 0 \\ \end{array} \begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array} } \right] , \\ \left[ {Z_{b3} } \right] & = \left[ {\begin{array}{*{20}c} \frac{h}{2} & {h_{v} } & {z - \frac{h}{2} - h_{v} } \\ 0 & 0 & 0 \\ \end{array} \begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{array} } \right] ,\quad \left[ {Z_{s1} } \right] = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ \end{array} \begin{array}{*{20}c} { z } & 0 & 0 \\ \end{array} } \right] , \\ \left[ {Z_{s2} } \right] & = \left[ {\begin{array}{*{20}c} 0 & 1 & 0 \\ \end{array} \begin{array}{*{20}c} \frac{h}{2} & z & 0 \\ \end{array} } \right] \quad {\text{and }}\quad \quad \quad \left[ {Z_{s3} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 \\ \end{array} \begin{array}{*{20}c} \frac{h}{2} & {h_{v} } & {z - \frac{h}{2}} \\ \end{array} - h_{v} } \right] \\ \end{aligned} $$

Appendix 2

$$ \begin{aligned} \left[ {B_{tbi} } \right] & = \left[ {\begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial x}} & 0 \\ \end{array} } \right], \quad \quad \quad \quad \quad \left[ {B_{tsi} } \right] = \left[ {\begin{array}{*{20}c} 0 & {\frac{{\partial n_{i} }}{\partial x}} \\ \end{array} } \right], \quad \quad \quad \quad \quad \left[ {B_{nti} } \right] = \left[ { \begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial x}} & 0 \\ 0 & {\frac{{\partial n_{i} }}{\partial x}} \\ \end{array} } \right] , \\ \left[ {B_{rbi} } \right] & = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial x}} & 0 & 0 \\ 0 & {\frac{{\partial n_{i} }}{\partial x}} & 0 \\ 0 & 0 & {\frac{{\partial n_{i} }}{\partial x}} \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} {n_{i} } & 0 & 0 \\ 0 & {n_{i} } & 0 \\ 0 & 0 & {n_{i} } \\ \end{array} } \\ \end{array} } \right] \;{\text{and}}\quad \left[ {B_{rsi} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {n_{i} } & 0 & 0 \\ 0 & {n_{i} } & 0 \\ 0 & 0 & {n_{i} } \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} {\frac{{\partial n_{i} }}{\partial x}} & 0 & 0 \\ 0 & {\frac{{\partial n_{i} }}{\partial x}} & 0 \\ 0 & 0 & {\frac{{\partial n_{i} }}{\partial x}} \\ \end{array} } \\ \end{array} } \right] \\ \end{aligned} $$

Appendix 3

$$ \left[ {D_{ttb} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {\bar{C}_{b}^{k} } \right]dz, \quad \quad \quad \quad \quad \quad \left[ {D_{trb} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {\bar{C}_{b}^{k} } \right]\left[ {Z_{b1} } \right]dz, $$
$$ \left[ {D_{rrb} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {Z_{b1} } \right]^{T} \left[ {\bar{C}_{b}^{k} } \right]\left[ {Z_{b1} } \right]dz,\quad \quad \quad \quad \quad \quad \left[ {D_{tts} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {\bar{C}_{s}^{k} } \right]dz, $$
$$ \left[ {D_{trs} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {\bar{C}_{s}^{k} } \right]\left[ {Z_{s1} } \right]dz , \quad \left[ {D_{rrb} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {Z_{b1} } \right]^{T} \left[ {\bar{C}_{s}^{k} } \right]\left[ {Z_{s1} } \right]dz, $$
$$ \left[ {D_{tts} } \right]_{c} = \sum\limits_{k = 1}^{N + 2} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {\bar{C}_{s}^{k} } \right]dz, \quad \left[ {D_{trs} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {\bar{C}_{s}^{k} } \right]\left[ {Z_{s1} } \right]dz, $$
$$ \\ \left[ {D_{rrb} } \right]_{c} = \sum\limits_{k = 1}^{N} \int\limits_{{h_{k} }}^{{h_{k + 1} }} \left[ {Z_{b1} } \right]^{T} \left[ {\bar{C}_{s}^{k} } \right]\left[ {Z_{s1} } \right]dz ,\quad \quad \quad \quad \quad \quad \left[ {D_{rtb} } \right]_{c} = \left[ {D_{trb} } \right]_{c}^{T} $$
$$ \left[ {D_{ttbs} } \right]_{v} = \int\limits_{{h_{N + 1} }}^{{h_{N + 2} }} dz = h_{v} ,\quad \quad \quad \quad \quad \quad \left[ {D_{trbs} } \right]_{v} = \int\limits_{{h_{N + 1} }}^{{h_{N + 2} }} \left[ {Z_{s2} } \right]dz , $$
$$ \left[ {D_{rtbs} } \right]_{v} = \left[ {D_{trb} } \right]_{v}^{T} ,\quad \quad \quad \quad \quad \left[ {D_{trbs} } \right]_{v} = \int\limits_{{h_{N + 1} }}^{{h_{N + 2} }} \left[ {Z_{s2} } \right]^{T} \left[ {Z_{s2} } \right]dz, $$
$$ \left[ {D_{ttb} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {\bar{C}_{pb1} } \right]dz, \quad \quad \quad \quad \left[ {D_{trb} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {\bar{C}_{pb1} } \right]\left[ {Z_{b3} } \right]dz, $$
$$ \left[ {D_{rrb} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{b3} } \right]^{T} \left[ {\bar{C}_{pb1} } \right]\left[ {Z_{b3} } \right]dz,\quad \quad \quad \quad \left[ {D_{rtb} } \right]_{p} = \left[ {D_{trb} } \right]_{p}^{T} , $$
$$ \left[ {D_{tts} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \bar{C}_{55} dz , \quad \quad \quad \quad \left[ {D_{trs} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \bar{C}_{55} \left[ {Z_{s3} } \right]dz, $$
$$ \left[ {D_{rrb} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{s3} } \right]^{T} \bar{C}_{55} \left[ {Z_{s3} } \right]dz,\quad \quad \quad \quad \left[ {D_{rts} } \right]_{p} = \left[ {D_{trs} } \right]_{p}^{T} , $$
$$ \left[ {D_{ttbs1} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {\bar{C}_{pb2} } \right]dz,\quad \quad \quad \quad \left[ {D_{trbs1} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {\bar{C}_{pb2} } \right]\left[ {Z_{s3} } \right]dz , $$
$$ \left[ {D_{rtbs1} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{b3} } \right]^{T} \left[ {\bar{C}_{pb2} } \right]dz, \quad \quad \quad \quad \left[ {D_{rrbs1} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{b3} } \right]^{T} \left[ {\bar{C}_{pb2} } \right]\left[ {Z_{s3} } \right]dz, $$
$$ \left[ {D_{ttsb2} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {\bar{C}_{ps1} } \right]dz , \quad \quad \quad \quad \left[ {D_{trsb2} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {\bar{C}_{ps1} } \right]\left[ {Z_{b3} } \right]dz, $$
$$ \left[ {D_{rtsb2} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{s3} } \right]^{T} \left[ {\bar{C}_{ps1} } \right]dz,\quad \quad \quad \quad \left[ {D_{rrsb2} } \right]_{p} = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{s3} } \right]^{T} \left[ {\bar{C}_{ps1} } \right]\left[ {Z_{b3} } \right]dz, $$
$$ \left[ {D_{ttsb1} } \right]_{p} = \left[ {D_{ttbs1} } \right]_{p}^{T} ,\;\left[ {D_{trsb1} } \right]_{p} = \left[ {D_{rtbs1} } \right]_{p}^{T} , $$
$$ \left[ {D_{rtsb1} } \right]_{p} = \left[ {D_{trbs1} } \right]_{p}^{T} , \;\left[ {D_{rrsb1} } \right]_{p} = \left[ {D_{rrbs1} } \right]_{p}^{T} , $$
$$ \left[ {D_{ttbs2} } \right]_{p} = \left[ {D_{ttsb2} } \right]_{p}^{T} , \;\left[ {D_{trbs2} } \right]_{p} = \left[ {D_{rtsb2} } \right]_{p}^{T} , $$
$$ \left[ {D_{rtbs2} } \right]_{p} = \left[ {D_{trsb2} } \right]_{p}^{T} ,\; \left[ {D_{rrbs2} } \right]_{p} = \left[ {D_{rrsb2} } \right]_{p}^{T} , $$
$$ \left[ {D_{tbp} } \right] = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left\{ {\bar{e}_{b} } \right\}\frac{1}{{h_{p} }}dz , \quad \quad \quad \quad \left[ {D_{rbp} } \right] = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{b3} } \right]^{T} \left\{ {\bar{e}_{b} } \right\}\frac{1}{{h_{p} }}dz, $$
$$ \left[ {D_{tsp} } \right] = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \bar{e}_{35} \frac{1}{{h_{p} }}dz,\quad \quad \quad \quad \left[ {D_{rsp} } \right] = \int\limits_{{h_{N + 2} }}^{{h_{N + 3} }} \left[ {Z_{s3} } \right]^{T} \bar{e}_{35} \frac{1}{{h_{p} }}dz, $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, D., Ray, M.C. Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite. Int J Mech Mater Des 9, 83–104 (2013). https://doi.org/10.1007/s10999-012-9207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9207-5

Keywords

Navigation