Skip to main content
Log in

Mullins effect on incompressible hyperelastic cylindrical tube in finite torsion

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The isotropic softening effect in non-homogeneous deformation resulting from combined effect of torsion, extension and inflation of cylindrical rubber tube is discussed. The effects of deformation induced anisotropy, permanent set and hysteresis are neglected. A general neo-Hookean parent material model is illustrated and subsequently the stress-softening effect on the same hyperelastic material is analyzed. Simple torsion of cylindrical tube with neo-Hookean material model is analyzed and the results obtained are shown in various plots. Analytical results are compared with the experimental results of Rivlin and Saunders. Universal relations are also established for incompressible, isotropic, hyperelastic material for non-homogeneous deformation with isotropic damage function in both virgin and stress-softened cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  Google Scholar 

  • Beatty, M.F.: A class of universal relations in isotropic elasticity theory. J. Elasticity 17(2), 113–121 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Beatty, M.F.: A class of universal relations for constrained, isotropic elastic materials. Acta Mech. 80(3–4), 299–312 (1989)

    Article  MATH  Google Scholar 

  • Beatty, M.F., Krishnaswamy, S.: Theory of stress-softening in incompressible isotropic materials. J. Mech. Phys. Solids 48(9), 1931–1965 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bouasse H, Carrière Z (1903) Courbes de traction du caoutchouc vulcanise. Ann. Fac. Sci. Univ. Toulouse 5, 257–283

    Google Scholar 

  • Bueche, F.: Molecular basis for the Mullins effect. J. Appl. Polym. Sci. 4, 107–114 (1960)

    Article  Google Scholar 

  • D’Ambrosio, P., De Tommasi, D., Ferri, D., Puglisi, G.: A phenomenological model for healing and hysteresis in rubber-like material. Int. J. Eng. Sci. 46(4), 293–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • De Tommasi, D., Puglisi, G., Saccomandi, G.: A micromechanics-based model for the Mullins effect. J. Rheol. 50(4), 495–512 (2006)

    Article  Google Scholar 

  • De Tommasi, D., Puglisi, G.: Mullins effect for a cylinder subjected to combined extension and torsion. J. Elasticity 86(1), 85–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Diani, J., Bruno, F., Gilormini, P.: A review on the Mullins effect. Eur. Polym. J. 45, 601–612 (2009)

    Article  Google Scholar 

  • Dorfmann, A., Ogden, R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41(7), 1855–1878 (2004)

    Article  MATH  Google Scholar 

  • Drozdov, A.D., Dorfmann, A.I.: Stress–strain relations in finite viscoelastoplasticity of rigid-rod networks: applications to the Mullins effect. Continuum Mech. Thermodyn. 13(3), 183–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Govindjee, S., Simo, J.C.: A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J. Mech. Phys. Solids 39(1), 87–112 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, M.S., Tobolsky, A.V.: A new approach for the theory of relaxing polymeric media. J. Chem. Phys. 14, 87–112 (1946)

    Article  Google Scholar 

  • Gurtin, M.E., Francis, E.C.: Simple rate-independent model for damage. J. Spacecraft 18(3), 285–286 (1981)

    Article  Google Scholar 

  • Harwood, J.A.C., Mullins, L., Payne, A.R.: Stress softening in natural rubber vulcanizates. Part II: stress softening effects in pure gum and filler loaded rubbers. J. Appl. Polym. Sci. 9, 3011–3021 (1965)

    Article  Google Scholar 

  • Holt, W.L.: Behavior of rubber under repeated stresses. Rubber Chem. Technol. 5, 79–89 (1932)

    Article  Google Scholar 

  • Horgan, C.O., Murphy, J.G.: Torsion of incompressible fibre-reinforced nonlinearly elastic circular cylinders. J. Elasticity 103(2), 235–246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Horgan, C.O., Murphy, J.G.: Finite extension and torsion of fibre-reinforced non-linearly elastic circular cylinders. Int. J. Non-Linear Mech. 47(2), 97–104 (2012)

    Article  Google Scholar 

  • Horgan, C.O., Ogden, R.W., Saccomandi, G.: A theory of stress softening of elastomers based on finite chain extensibility. Proc. R. Soc. Lond. 460, 1737–1754 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Horgan, C.O., Saccomandi, G.: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elasticity 77(2), 123–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, M.A., Beatty, M.F.: The Mullins effect in uniaxial extension and its influence on transverse vibration of a rubber string. Cont. Mech. Therm. 5(2), 83–115 (1993)

    Article  MathSciNet  Google Scholar 

  • Kanner, L.M., Horgan, C.O.: Inhomogeneous shearing of strain-stiffening rubber-like hollow circular cylinders. Int. J. Solids Struct. 45(20), 5464–5482 (2008)

    Article  MATH  Google Scholar 

  • Krishnaswamy, S., Beatty, M.F.: Damage induced stress-softening in the torsion, extension and inflation of a cylindrical tube. Q. J. Mech. Appl. Math. 54(2), 295–327 (2001)

    Article  MATH  Google Scholar 

  • Lopez-Pamies, O.: A new I1-based hyperelastic model for rubber elastic materials. C R Mecanique 338(1), 3–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Marckmann, G., Verron, E., Gornet, L., Chagnon, G., Charrier, P., Fort, P.: A theory of network alteration for the Mullins effect. J. Mech. Phys. Solids 50(9), 2011–2028 (2002)

    Article  MATH  Google Scholar 

  • Mullins, L.: Effect of stretching on the properties of rubber. J. Rubber Res. 16, 275–289 (1947)

    Google Scholar 

  • Mullins, L., Tobin, N.R.: Theoretical model for the elastic behavior of filled-reinforced vulcanized rubbers. J. Rubber Chem. Tech. 30, 555–571 (1957)

    Article  Google Scholar 

  • Ogden, R.W., Roxburgh, D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 455, 2861–2877 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Qi, H.J., Boyce, M.C.: Stress–strain behavior of thermoplastic polyurethanes. Mech. Mater. 37(8), 817–839 (2005)

    Article  Google Scholar 

  • Rivlin RS, Saunders DW (1951) Large elastic deformation of isotropic materials. VII. Experiments on the deformations of rubber. Philos. Trans. R. Soc. Lond. A 243, 251–288 (1951)

    Google Scholar 

  • Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60(2), 153–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Tobolsky, A.: Properties and structure of polymers. Wiley, New York (1960)

    Google Scholar 

  • Wineman, A.S., Rajagopal, K.R.: On a constitutive theory for materials undergoing microstructural changes. Arch. Mech. 42, 53–75 (1990)

    MathSciNet  MATH  Google Scholar 

  • Wineman, A., Shaw, J.: Combined deformations and temperature-induced scission in a rubber cylinder in torsion. Int. J. Non Linear Mech. 42(2), 330–335 (2007)

    Article  Google Scholar 

  • Zúñiga, A.E.: A phenomenological energy-based model to characterize stress-softening effect in elastomers. Polymer 46(10), 3496–3506 (2005)

    Article  Google Scholar 

  • Zúñiga, A.E., Beatty, M.F.: A new phenomenological model for stress-softening in elastomers. J. Appl. Math. Phys. (ZAMP) 53(5), 794–814 (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the research grant SR/FTP/ETA-69/2010 under SERC Fast track scheme funded by Department of science and technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firozut Tauheed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauheed, F., Sarangi, S. Mullins effect on incompressible hyperelastic cylindrical tube in finite torsion. Int J Mech Mater Des 8, 393–402 (2012). https://doi.org/10.1007/s10999-012-9203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9203-9

Keywords

Navigation