Skip to main content
Log in

Multi-scale EFG model for Simulating Concrete Material

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, a new multi-scale numerical model is presented using meshless element free Galerkin (EFG) method to simulate the multi-scale constitutive relation of concrete. The scale separation is based on the decomposition of the mesh free shape function into α and β scales, similar decomposition is also adopted for the constitutive equations. And the constitutive relations in different scales for concrete are established. The multi-scale EFG model is utilized for discretization of components of concrete block, which are aggregate, cement and transition region. The strengths of these components are adopted according to Weibull distribution. Consequently, the multi-scale EFG model is applied to describe the evolutionary processes of damage, the propagation of cracks and the characteristics of hysteresis of concrete. The plain static analysis of concrete block is performed by using this model and the calculated result is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bazant, Z.P., Caner, F.C., Adley, M.D., Akers, S.A.: Fracturing rate effect and creep in microplane model for dynamics. J. Eng. Mech. 9, 962–970 (2000b)

    Article  Google Scholar 

  • Bazant, Z.P., Caner, F.C., Carol, I., Adley, M.D., Akers, S.A.: Microplane model M4 for concrete. I: formulation with work-conjugate deviatoric stress. J. Eng. Mech. 9, 944–953 (2000a)

    Article  Google Scholar 

  • Bazant, Z.P., Tabbara, M.R., Kazemi, M.T., et al.: Random particle models for fracture of aggregate or fiber composites. J. Eng. Mech. 116(8), 1686–1705 (1990)

    Article  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Meth. Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Carpinteri, A., Chiaia, B., Cornetti, P.: On the mechanics of quasi-brittle materials with a fractal microstructure. J. Eng. Fract. Mech. 70, 2321–2349 (2003)

    Article  Google Scholar 

  • Cusatis, G., Bazant, Z.P.: F.ASCE, Luigi Cedolin, M.ASCE. Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory. J. Eng. Mech.129(12), 1439–1448 (2003)

  • De Schutter, G., Taerwe, L.: Random particle model for concrete based on delaunay triangulation. Mater. Struct. 26(156), 67–73 (1993)

    Article  Google Scholar 

  • Gao, H.J., Klein, P.: Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bond. J. Mech. Phys Solids 46(2), 187–218 (1998)

    Article  MATH  Google Scholar 

  • Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics, theory and application to non-spherical stars. Men. Not. R. Astron. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  • Jibo, X.I.N.G., Liangqun, Y.U.: Study of fracture behavior particle composites with beam-aggregate model. J. Basic Sci. Eng. 5(2), 193–198 (1997)

    Google Scholar 

  • Jie, Li.: Research on the stochastic damage mechanics for concrete materials and structures. J. Tongji Univ. 32(1), 75–85 (2004)

    MathSciNet  Google Scholar 

  • Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Article  MATH  Google Scholar 

  • Schlangen, E., Garboczi, E.J.: New method for simulating fracture using an elastically uniform random geometry lattice. Int. J. Eng. Sci. 34(10), 1131–1144 (1996)

    Article  MATH  Google Scholar 

  • Schlangen, E., Garboczi, E.J.: Fracture simulations of concrete using lattice model: computational aspects. Eng. Fract. Mech. 57(2–3), 319–332 (1997)

    Article  Google Scholar 

  • Tang, C.A.: Numerical simulation of rock failure and associated seismicity. Int. J Rock Mech. Min. Sci. 34, 249–262 (1997)

    Article  Google Scholar 

  • Wei, J.-x., Yu, Q.-j., Zeng, X.-x., Bai, R.-y.: Fractal dimension of pore structure of concrete. J. South China Univ. Technol. 35(2), 121–124 (2007)

    Google Scholar 

  • Wittmann, F.H.: Structure of Concrete with Respect to Crack Formation, pp. 43–74. Elsevier Science Publishers, Netherlands (1989)

    Google Scholar 

  • Yuncheng, L.I., Hhuaifa, M.A., Xiao, C.H.E.N.: Analysis of Concrete3-D meso-mechanical Model. J. Shandong Inst. Commer. Technol. 7(3), 98–101 (2007)

    Google Scholar 

  • Yuncheng, L.I., Hhuaifa, M.A., Huoqun, C.H.E.N., Xiao, X.U.: Approach to generation of random convex polyhedral aggregate model and plotting for concrete meso-mechanics. J. Hydraul. Eng. 5, 588–592 (2006)

    Google Scholar 

  • Zhang, Z.N., Ge, X.R.: A new quasi-continuum constitutive model for crack growth in an isotropic solid [J]. Eur. J. Mech. Solids 24(2), 243–252 (2005a)

    Article  MATH  Google Scholar 

  • Zhang, Z.N., Ge, X.R.: Micromechanical consideration of tensile crack behavior based on virtual internal bond in contrast to cohesive stress. Theor. Appl. Fract. Mech. 43(3), 342–359 (2005b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

xu, Q., Chen, J. & Li, J. Multi-scale EFG model for Simulating Concrete Material. Int J Mech Mater Des 8, 113–120 (2012). https://doi.org/10.1007/s10999-012-9180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9180-z

Keywords

Navigation