Skip to main content
Log in

Transient non-linear simulation with component mode synthesis

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A method is presented to incorporate non-linear material behavior in a transient simulation with component mode synthesis reduction. This method is used in conjunction with rigid body solution techniques to expand the useful range of rigid body design tools for the development of complex mechanisms. A fixed interface component mode synthesis technique is enhanced with an algorithm to approximate the effect of plastic deformation during a dynamic simulation. The plastic strain is determined from the elastic modal response using classical plasticity theory and applied to the modal solution by projecting an effective nodal force vector on the modal coordinates to induce the necessary plastic deformation. This method can be used during the design process to approximate the non-linear dynamic response of complex mechanisms and offer significant computational savings over a full fidelity, non-linear dynamic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bond, J., Khraishi, T.: Non-linear dynamic modeling using component mode synthesis. Int. J. Theor. Appl. Multiscale Mech. 1(2), 150–163 (2009)

    Google Scholar 

  • Clough, R., Penzien, J.: Dynamics of Structures. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  • Cornwell, R., Craig Jr., R., Johnson, C.: On the application of the mode-acceleration method to structural engineering problems. Earthq. Eng. Struct. Dyn. 11(5), 679–688 (1983)

    Article  Google Scholar 

  • Craig Jr., R., Bampton, M.: Coupling of substructures for dynamic analyses. Am. Inst. Aeronaut. Astronaut. J. 6(7), 1313–1319 (1968)

    MATH  Google Scholar 

  • Craig Jr., R., Kurdila, A.: Fundamentals of Structural Dynamics. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  • Hahn, H.: Rigid Body Dynamics of Mechanisms. Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  • Herting, D.: MSC/NASTRAN Advanced Dynamic Analysis User’s Guide, Version 70. MacNeal/Schwendler Corporation, Los Angeles (1997)

    Google Scholar 

  • Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  • Hintz, R.: Analytical methods in component mode synthesis. Am Inst. Aeronaut. Astronaut. J. 13(8), 1007–1016 (1975)

    MATH  Google Scholar 

  • Hughes, T.: The Finite Element Method. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  • Ibrahimbegovic, A., Wilson, E.: A modified method of incompatible modes. Commun. Appl. Numer. Methods 7(3), 187–194 (1991)

    Article  MATH  Google Scholar 

  • Jacob, B., Ebecken, F.: An optimized implementation of the Newmark/Newton-Raphson algorithm for the time integration of non-linear problems. Commun. Numer. Methods Eng. 10(12), 983–992 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, S., Lin, T.: Elastic-plastic dynamic analysis of structures using known elastic solutions. Earthq. Eng. Struct. Dyn. 7(2), 147–159 (1979)

    Article  Google Scholar 

  • MacNeal, R.: Finite Elements: Their Design and Performance. Marcel Dekker, Inc, New York (1994)

    Google Scholar 

  • Nagarajan, S., Popov, E.: Elastic-plastic dynamic analysis of axisymmetric solid. Comput. Struct. 4(6), 1117–1134 (1974)

    Article  Google Scholar 

  • Newmark, N.: A method of computation for structural dynamics. Am. Soc. Civil Eng. J. Eng. Mech. 85(1), 67–94 (1959)

    Google Scholar 

  • Owen, D., Hinton, E.: Finite Elements in Plasticity: Theory and Practice. Pineridge Press Limited, Swansea (1980)

    MATH  Google Scholar 

  • Petyt, M.: Introduction to finite element vibration analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Taylor, R., Beresford, P., Wilson, E.: A non-conforming element for stress analysis. Int. J. Numer. Methods Eng. 10(6), 1211–1219 (1976)

    Article  MATH  Google Scholar 

  • Thompson, W.: Theory of Vibration with Applications. Prentice-Hall, Englewood Cliffs (1972)

    Google Scholar 

  • Zienkiewicz, O.: The Finite Element Method. McGraw-Hill, London (1977)

    MATH  Google Scholar 

  • Zienkiewicz, O., Valliappan, S., King, I.: Elasto-plastic solutions of engineering problems; initial stress finite element approach. Int. J. Numer. Methods Eng. 1(1), 75–100 (1969)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Bond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, J.T., Khraishi, T.A. Transient non-linear simulation with component mode synthesis. Int J Mech Mater Des 5, 365–380 (2009). https://doi.org/10.1007/s10999-009-9108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-009-9108-4

Keywords

Navigation