Skip to main content
Log in

Bend stiffness of laminate microstructures containing three dissimilar materials

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This article examines the effective flexural modulus of a multilayered micro-system evolving into alternative layered structures consisting of three dissimilar materials. A multiscale model of the bending stiffness is presented to capture the impact of changing the constituent materials, the layer architecture and the cross-section geometry. The results are plotted onto maps to show the existence of specific domains, within which fall the effective properties of all possible tri-material multilayered configurations. The potential to stiffen a bi-material system is demonstrated by integrating additional layers of a more flexible material for given constraints on the volume fraction. The proposed scheme is conducive to contrast structural alternatives in constrained and unconstrained design. A case study shows how the maps enable optimum selection among various design concepts, which may range from monolithic materials with alternative shape geometries to systems consisting of two and three materials arranged in dissimilar multiple layer architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Cross sectional area

B :

Width (m)

b :

Internal width (m)

c :

Dimensionless multiplicator of cross-section internal width (c = b/B)

c 1 :

Beam curvature

d :

Dimensionless multiplicator of cross-section internal height (d = h/H)

D :

Rectangular cross-section envelope

E :

Young’s modulus (GPa)

E D, ρ D :

Effective of properties of prismatic beam

E T, ρ T :

Effective of properties of shaped beam

h :

Internal height (m)

H :

Height (m)

I :

Second moment of area (m4)

J T :

Cross-section torsional constant (m4)

l :

Beam length (m)

M b :

Bending moment per unit width

m :

Mass (mg)

n :

Exponent of Lame’ curves

p :

Performance index

q :

Scaling parameter of performance index

r g :

Radius of gyration (m)

u, v :

Envelope multiplicators

S :

Shape

V :

Volume (m3)

ρ :

Material density (mg/m3)

λ :

Envelope efficiency parameter

ψ :

Shape transformer

References

  • Ashby, M.F.: Materials and shape. Acta Metall. Mater. 39(6), 1025–1039 (1991). doi:10.1016/0956-7151(91)90189-8

    Article  Google Scholar 

  • Ashby, M.F.: Criteria for selecting the components of composites. Acta Metall. Mater. 41(5), 131–135 (1993a). doi:10.1016/0956-7151(93)90242-K

    Google Scholar 

  • Ashby, M.F.: Criteria for selecting the components of composites. Acta Metall. Mater. 41(5), 131–135 (1993b). doi:10.1016/0956-7151(93)90242-K

    Google Scholar 

  • Ashby, M.F.: Material Selection in Mechanical Design. Pergamon Press, Oxford (1999)

    Google Scholar 

  • Caldwell, J.B., Woodhead, R.G.: Ship structures: some possibilities for improvement. Transactions of North East Cost Institution of Engineers and shipbuilders 89, 101–120 (1973)

    Google Scholar 

  • Cheggour, N., Ekin, J.W., Thieme, C.L.H., Xie, Y.-Y., Selvamanickam, V., Feenstra, R.: Reversible axial-strain effect in Y–Ba–Cu–O coated conductors. Supercond. Sci. Technol. 18(12), S319–S324 (2005). doi:10.1088/0953-2048/18/12/016

    Article  Google Scholar 

  • Cox, H.L.: The design of structures of least weight. Pergamon Press, Oxford (1965)

    Google Scholar 

  • Degani, O., Seter, D.J., Socher, E., Kaldor, S., Nemirovsky, Y.: Optimal design and noise consideration of micro machined vibrating rate gyroscope with modulated integrative differential optical sensing. J. Microelectromech. Syst. 7, 329–338 (1998). doi:10.1109/84.709652

    Article  Google Scholar 

  • de Silva, C.W.: Sensors and Actuators: Control System. CRC Press, Boca Raton, FL (2007)

    Google Scholar 

  • Ferguson, A.T., Li, L., Nagaraj, V.T., Balachandran, B., Piekarski, B., DeVoe, D.L.: Modeling and design of composite free–free beam piezoelectric resonators. Sens. Actuators 118(1), 63–69 (2005). doi:10.1016/S0924-4247(04)00540-0

    Article  Google Scholar 

  • Gad-el-Hak, M.: The MEMS Handbook, II edn. CRC Press, Boca Raton, FL (2002)

    MATH  Google Scholar 

  • Galayko, D., Kaiser, A., Legrand, B., Buchaillot, L., Collard, D., Combi, C.: Tunable bandpass T-filter with electrostatically- driven polysilicon micromechanical resonators. Sens. Actuators A Phys. 117, 115–120 (2005). doi:10.1016/j.sna.2004.06.002

    Article  Google Scholar 

  • Hong, Y.S., Lee, J.H., Kim, S.H.: A laterally driven symmetric micro-resonator for gyroscopic applications. J. Micromech. Microeng. 10, 452–458 (2000). doi:10.1088/0960-1317/10/3/322

    Article  Google Scholar 

  • Huang, X.M.H., Ekinci, K.L., Yang, Y.T., Zorman, C.A., Mehregany, M., Roukes, M.L.: Nanoelectromechanical silicon carbide resonators for ultra-high frequency applications. In: Proceedings of the 2002 Sensor, Actuator and Microsystems Workshop, Hilton Head, SC, 2–6 June 2002, pp. 368–369

  • Huber, J.E., Fleck, N.A., Ashby, M.F.: The selection of mechanical actuators based on performance indices. Proc. R. Soc. Lond. A 453, 2185–2205 (1997)

    Article  Google Scholar 

  • Jennifer, W.L.Z., Chan, H.-Y., To, T.K.H., Lai, K.W.C., Li, W.J.: Polymer MEMS actuators for underwater micromanipulation. IEEE/ASME Trans. Mechatron. 9(2), 334–342 (2004). doi:10.1109/TMECH.2004.828652

    Article  Google Scholar 

  • Khaled, A.-R.A., Vafai, K., Yang, M., Zhang, X., Ozkan, C.S.: Analysis, control and augmentation of microcantilever deflections in bio-sensing systems. Sens. Actuators 94, 103–115 (2003). doi:10.1016/S0925-4005(03)00231-4

    Article  Google Scholar 

  • Lange, D., Hagleitner, C., Herzog, C., Brand, O., Baltes, H.: Magnetic actuation and MOS-transistor sensing for CMOS-integrated resonators. In: 15th IEEE International Conference on Micro-Electro Mechanical Systems, MEMS 2002, Las Vegas, Nevada, USA, 20–24 January 2002, pp. 304–307

  • Lin, S.: Effect of electric load impedances on the performance of sandwich piezoelectric transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51(10), 864–869 (2004a)

    Google Scholar 

  • Lin, S.: Piezoelectric ceramic rectangular transducers in flexural vibration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51(7), 1280–1286 (2004b)

    Google Scholar 

  • Marie, R., Jensenius, H., Thaysen, J., Christensen, C.B., Boisen, A.: Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors. Ultramicroscopy 91, 29–36 (2002). doi:10.1016/S0304-3991(02)00079-7

    Article  Google Scholar 

  • Melamud, R., Kim, B., Hopcroft, M.A., Chandorkar, S., Agarwal, M., Jha, C., Bhat, S., Park, K.K., Kenny, T.W.: Composite flexural mode resonator with reduced temperature coefficient of frequency. In: Solid-State Sensors, Actuators, and Microsystems Workshop, South Carolina, 4–8 June 2006

  • Mertens, J., Finot, E., Thundat, T., Fabre, A., Nadal, M.-H., Eyraud, V., Bourillot, E.: Effects of temperature and pressure on microcantilever resonance response. Ultramicroscopy 97(1), 119–126 (2003). doi:10.1016/S0304-3991(03)00036-6

    Article  Google Scholar 

  • Nguyen, C.T.-C.: Micromechanical resonators for oscillators and filters. In: Proceeding 1995 IEEE International Ultrasonic Symposium Seattle, WA, USA (1995)

  • Nguyen, C.T.-C., Katehi, L.P.B., Rebeiz, G.M.: Micromachined devices for wireless communications. Proc. IEEE. 86, 1756–1768 (1998). doi:10.1109/5.704281

    Article  Google Scholar 

  • Nguyen, C.T.-C.: Frequency-selective MEMS for miniaturized low-power communication devices. IEEE. Trans. Microw. Theory Tech. 47(8), 1486–1503 (1999)

    Google Scholar 

  • Nguyen, C.T.-C.: Vibrating RF MEMS for next generation wireless applications. In: Proceedings of the 2004 IEEE Custom Integrated Circuits Conference, Orlando, Florida, 3–6 October 2004, pp. 257–264

  • Parkhouse, J.G.: Structuring a process of material dilution. In: Nooshin, H. (ed.) Proceedings of the 3rd International Conference on Space Structures, pp. 367–374. Elsevier Applied Science Publishers, New York (1984)

  • Pasini, D.: Material and shape selection for optimizing flexural vibrations in multilayered resonators. J. Microelectromech. Syst. 15(6), 1745–1758 (2006a). doi:10.1109/JMEMS.2006.885997

    Article  Google Scholar 

  • Pasini, D.: Shape transformers for material and shape selection of lightweight beams. J. Mater. Des. 28(7), 2071–2079 (2006b)

    MathSciNet  Google Scholar 

  • Pasini, D., Smith, D.J., Burgess, S.C.: Structural efficiency maps for beams subjected to bending. Proc. Instn Mech. Engrs, Part L. J. Mater. Des. Appl. 217(3), 207–220 (2003)

    Google Scholar 

  • Prasanna, S., Spearing, S.M.: Materials selection and design of microelectrothermal bimaterial actuators. J. Microelectromech. Syst. 16(2), 248–259 (2007). doi:10.1109/JMEMS.2006.889528

    Article  Google Scholar 

  • Rakshit, S., Ananthasuresh, G.K.: Simultaneous material selection and geometry design of statically determinate trusses using continuous optimization. J. Struct. Multidiscip. Optim. 35(1), 55–68 (2008). doi 10.1007/s00158-007-0116-4

    Article  Google Scholar 

  • Rasmussen, P.A., Thaysen, J., Hansen, O., Eriksen, S.C., Boisen, A.: Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97(1), 371–376 (2003). doi:10.1016/S0304-3991(03)00063-9

    Article  Google Scholar 

  • Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998). doi:10.1063/1.368002

    Article  Google Scholar 

  • Sandberg, R., Boisen, A., Svendsen, W.: Characterization system for resonant micro- and nanocantilevers. Rev. Sci. Instrum. 76, 125101 (2005a)

    Article  Google Scholar 

  • Sandberg, R., Mølhave, K., Boisen, A., Svendsen, W.: Effect of gold coating on the Q-factor of a resonant cantilever. J. Micromech. Microeng. 15, 2249–2253 (2005b). doi:10.1088/0960-1317/15/12/006

    Article  Google Scholar 

  • Sandberg, R., Svendsen, W., Mølhave, K., Boisen, A.: Temperature and pressure dependence of resonance in multi-layer microcantilevers. J. Micromech. Microeng. 15, 1454–1458 (2005c). doi:10.1088/0960-1317/15/8/011

    Article  Google Scholar 

  • Senturia, S.D.: Microsystem Design. Kluwer, Norwell, MA (2001)

    Google Scholar 

  • Serre, C., Perez-Rodrıguez, A., Morante, J.R., Gorostiza, P., Esteve, J.: Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope. Sens. Actuators 74, 134–138 (1999). doi:10.1016/S0924-4247(98)00347-1

    Article  Google Scholar 

  • Shanley, F.R.: Weight–strength Analysis of Aircraft Structures, 2nd edn. New York, Dover (1960)

    Google Scholar 

  • Sharpe, W.N.: Mechanical properties of MEMS materials, chapter 3. In: Gad-el-Hak, M. (ed.) The MEMS Handbook, pp. 3–33. CRC Press, Boca Raton, FL (2001)

  • Shieh, J., Huber, J.E., Fleck, N.A., Ashby, M.F.: The selection of sensors. Prog. Mater. Sci. 46, 461–504 (2001). doi:10.1016/S0079-6425(00)00011-6

    Article  Google Scholar 

  • Smith, D.J., Partbridge, P.G.: Flexural stiffness envelopes for planar system containing two dissimilar materials. Proc. Instn Mech. Engrs, Part L. J. Mater. Des. Appl. 213, 1–20 (1999)

    Google Scholar 

  • Sova, M., Bogdan, I.: Coplanar waveguide resonator design for array antenna applications. In: 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, vol. 1, pp. 57–59. Las Alamitos, USA (2003)

  • Spaepen, F.: Interfaces and stresses in thin films. Acta Mater. 48(1), 31–42 (2000). doi:10.1016/S1359-6454(99)00286-4

    Article  Google Scholar 

  • Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48, 179–196 (2000). doi:10.1016/S1359-6454(99)00294-3

    Article  Google Scholar 

  • Taka, A.M., Omodaka, A., Takeshima, N., Fujita, H.: Fabrication and operation of polyimide bimorph actuators for a ciliary motion system. J. Microelectromech. Syst. 2, 146–150 (1993)

    Article  Google Scholar 

  • Thaysen, J., Yalcinkaya, A.D., Vettiger, P., Menon, A.: Polymer-based stress sensor with integrated readout. J. Phys. D Appl. Phys. 35, 2698–2703 (2002). doi:10.1088/0022-3727/35/21/302

    Article  Google Scholar 

  • Vengallatore, S., Spearing, S.M.: Materials selection for microfabricated electrostatic actuators. Sens. Actuators 102A, 279–285 (2003)

    Google Scholar 

  • Wang, W., Soper, S.A.: Bio-MEMS; Technologies and Applications. CRC Press, Boca Raton, FL (2006)

    Google Scholar 

  • Wang, K., Wong, A.-C., Nguyen, C.T.-C.: VHF free–free beam high-Q micromechanical resonators. J. Microelectromech. Syst. 9(3), 347–360 (2000). doi:10.1109/84.870061

    Article  Google Scholar 

  • Wong, A.C., Nguyen, C.T.-C.: Micromechanical mixer-filters. J. Microelectromech. Syst. 13, 100–112 (2004). doi:10.1109/JMEMS.2003.823218

    Article  Google Scholar 

  • Yang, G.H., Chen, J.B., Pan, F.: The effects of layer thickness on the microstructure and magnetic properties of evaporated Co/Ag films. Phys. Status Solidi A 194(1), 71–80 (2002)

    Article  Google Scholar 

  • Yue, M., Lin, H., Dedrick, D.E., Satyanarayana, S., Majumdar, A., Bedekar, A.S., Jenkins, J.W., Sundaram, S.: A 2-D microcantilever array for multiplexed biomolecular analysis. J. Microelectromech. Syst. 13, 290–299 (2004). doi:10.1109/JMEMS.2003.823216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Pasini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasini, D. Bend stiffness of laminate microstructures containing three dissimilar materials. Int J Mech Mater Des 5, 175–193 (2009). https://doi.org/10.1007/s10999-008-9093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-008-9093-z

Keywords

Navigation