Skip to main content

Micro-indentation of metallic photonic crystals: experimental and numerical investigations


Photonic crystals (PCs) are synthetic materials that are used to control light propagation. PCs have a frequency bandgap where light is forbidden to propagate. This bandgap is strongly tied to the microstructure of the photonic crystal. Three-dimensional tungsten photonic crystal in a Lincoln-log microstructure has been suggested as a strong alternative filter in photovoltaic cells with significantly high power efficiency. PCs have also been suggested as sensors for submicron damage. Therefore, mechanical characterization of three-dimensional photonic crystals becomes of interest. Here we report on mechanical characterization of tungsten PC using means of micro-indentation. We also present a three-dimensional finite element simulation of the structural response of a Tungsten photonic crystal under micro-indentation load. Stresses developed in the PC can be used to quantify the level of damage in the crystal. We compare our simulation results with the experimental observations of a Vickers and Knoop micro-indentation experiments of tungsten PC. The FE models were proven able to simulate the mechanical response of the PC with a good accuracy. The calibrated FE models can be further used to realize the mechanical behavior of PC under different thermal and mechanical stresses when used as filters in photovoltaic cells or to simulate the effect of damage in PC sensors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  • ANSYS: Ansys Reference Manual. Version 10.0. Available via (2007)

  • Bažant, Z.P.: Scaling laws in mechanics of failure. J. Eng. Mech. 119, 1828–1844 (1993). doi:10.1061/(ASCE)0733-9399(1993)119:9(1828)

    Article  Google Scholar 

  • Biswas, R., El-Kady, I., Lin, S.Y., Ho, K.M.: Enhanced complete photonic band gap in the optimized planar diamond structure. Photonics. Nanostruct. Fundam. Appl. 1, 15 (2003)

    Article  Google Scholar 

  • Briant, C.L.: Tungsten: properties, processing, and applications. Adv. Mater. Process. 154, 29 (1998)

    Google Scholar 

  • Doerner, M.F., Gardner, D.S., Nix, W.D.: Plastic properties of think films on substrates as measured by submicron indentation hardness and substrate curvature techniques. J. Mater. Res. 1(6), 845–851 (1987). doi:10.1557/JMR.1986.0845

    Article  Google Scholar 

  • El-Kady, I., Sigalas, M.M., Biswas, R., Ho, K.M., Soukoulis, C.M.: Metallic photonic crystals at optical wavelengths. Phys. Rev. B 62, 15299–15302 (2000). doi:10.1103/PhysRevB.62.15299

    Article  Google Scholar 

  • El-Kady, I., Reda Taha, M.M., Su, M.: Application of photonic crystals in submicron damage detection and quantification. Appl. Phys. Lett. 88, 253109 (2006). doi:10.1063/1.2212050

    Article  Google Scholar 

  • Elmustafa, A.A., Ananda, A.A., Elmahboub, W.M.: Bilinear behavior in nano and microindentation tests of fcc polycrystalline materials. J. Eng. Mater. Technol. 126, 353–359 (2004). doi:10.1115/1.1789962

    Article  Google Scholar 

  • Gong, W., Wu, J., Guan, Z.: Load dependence of the apparent hardness of silicon nitride in a wide range of loads. Mater. Lett. 35, 58–61 (1998). doi:10.1016/S0167-577X(97)00234-6

    Article  Google Scholar 

  • Gorham, D.A., Pope, P.H., Field, J.E.: An improved method for compressive stress-strain measurements at very high strain rates. Proc. R. Soc. Lond. A Math. Phys. Sci. 438, 153–170 (1992)

    Article  MATH  Google Scholar 

  • Kunjomana, A.G., Chandrasekharan, K.A.: Microhardness studies of GaTe whiskers. Cryst. Res. Technol. 40, 782–785 (2005). doi:10.1002/crat.200410431

    Article  Google Scholar 

  • Lee, J.W., Kim, J.K., Kim, S.H., Sun, H.J., Yang, H.S., Sohn, H.C., et al.: Physical and electrical characteristics of physical vapor-deposited tungsten for bit line process. Jpn. J. Appl. Phys. 43(12), 8007–8012 (2004). doi:10.1143/JJAP.43.8007

    Article  Google Scholar 

  • Lin, S.Y., Flemming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., et al.: A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251 (1998). doi:10.1038/28343

    Google Scholar 

  • Misra, A., Kung, H.: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3, 217 (2001). doi:10.1002/1527-2648(200104)3:4<217::AID-ADEM217>3.0.CO;2-5

    Article  Google Scholar 

  • Paturaud, C., Farges, G., Sainte Catherine, M.C., Machet, J.: Correlation between hardness and embedded argon content of magnetron sputtered chromium films. Thin Solid Films 347, 46–55 (1999). doi:10.1016/S0040-6090(98)01417-5

    Article  Google Scholar 

  • Pauleau, Y., Dassapa, F.C., Lami, P., Oberlin, J.C., Romagna, F.: Silicide formation in metali/Si structures and diffusion barrier properties of CVD tungsten films. J. Mater. Res. 4(1), 156–162 (1989). doi:10.1557/JMR.1989.0156

    Article  Google Scholar 

  • Roy, R.A., Petkie, R., Boulding, A.: Properties and microstructure of tungsten films deposited by iron-assisted evaporation. J. Mater. Res. 6(1), 80–91 (1991). doi:10.1557/JMR.1991.0080

    Article  Google Scholar 

  • Schackelford, J.F.: Introduction to Materials Science for Engineers, 6th edn. New York (2005)

  • Sheyka, M.: Numerical and Experimental Investigation of Photonic Crystals as Sensors for Submicron Damage. M.Sc. Thesis, University of New Mexico, May (2008)

  • Stubičar, M., Tonejc, A., Radić, N.: Microhardness characterization of Al-W thin films. Vacuum 61, 309–316 (2001)

    Article  Google Scholar 

  • Verley, J.C., Mani, S.S., Fleming, J.G., El-Kady, I., Khraishi, T., Reda Taha, M.M.: Experimental demonstration of using nanophotonic crystal sensor systems for submicron damage detection, quantification, and diagnoses. Proc. SPIE 6179, 617904 (2006). doi:10.1117/12.658676

    Article  Google Scholar 

  • Yih, S.W.H., Wang, C.T.: Tungsten: Sources, Metallurgy, Properties, and Applications. Plenum Press, New York (1979)

    Google Scholar 

  • Yo-Han, Y., Woong, L., Hyunho, S.: Spherical nano-indentation of a hard thin film/soft substrate layered system: critical indentation depth. Model. Simul. Mater. Sci. Eng. 12, 59–67 (2004). doi:10.1088/0965-0393/12/1/006

    Article  Google Scholar 

  • Young, J.F., Mindess, S., Gray, R.J., Bentur, A.: The Science and Technology of Civil Engineering Materials. Prentice-Hall Inc., New Jersey (1998)

    Google Scholar 

  • Zong, Z., Lou, J., Adewoye, O.O., Elmustafa, A.A., Hammad, F., Soboyejo, W.O.: Indentation size effects in the nano- and micro-hardness of fcc single crystal metals. Mater. Sci. Eng. A 434, 178–187 (2006)

    Article  Google Scholar 

Download references


This research was partly funded by Sandia National Laboratories (SNL). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Specimens tested here were provided by the late Dr. J. Fleming, Sandia National Laboratories. The authors owe special thanks for Dr. Fleming for his sincere support throughout the study. Special thanks should also go to the Defense Threat Reduction Agency (DTRA)-Student Research Assistant (SRA) program for funding the first author during the course of this study. The authors greatly acknowledge this support. Finally, assistance with the simulations by Julie Kimsal from the mechanical engineering department at UNM is appreciated.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mahmoud M. Reda Taha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheyka, M., El-Kady, I., Khraishi, T. et al. Micro-indentation of metallic photonic crystals: experimental and numerical investigations. Int J Mech Mater Des 4, 407–418 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Photonic crystals
  • Bandgap
  • Micro-indentation
  • Finite element method
  • Micro damage
  • Vickers
  • Knoop