Skip to main content
Log in

Adhesion force during microcontact interaction between cylindrical-segment-on-flat and flat bodies

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Adhesion force including its both attractive and repulsive components during microcontact interaction between cylindrical-segment-on-flat and flat bodies is formulated using the volumetric integration of interactions among the atoms. Thenceforth the corresponding formulation for cylinder-on-flat and flat-on-flat is developed and compared with the available counterpart attractive force and they are in excellent agreement with each other. However, the present study provides also the repulsive component of adhesion force for these contact geometries. The formulation is also extended for a cylindrical segment with two radii to model the elastic–plastic deformation. Several phenomena related to adhesion during microcontact are then studied leading to the following salient observations. The adhesion force during microcontact interaction can be of the same order as the applied force, and thus causes the plastic deformation. The attractive force from the cylindrical segment is the major component of adhesion force for its radius/height ratios smaller than 1000 while that from the bulk body is the major for the larger ratios, i.e. when the cylindrical segment is similar to an asperity. There is considerable difference in the attractive force between a cylinder and a cylindrical-segment-on-flat for the smaller values of radius. The difference between attractive and total adhesion force is significant (∼60%) when adhesion force is the maximum, but it rapidly decreases with increasing separation distance and can be neglected at the separation distance larger than the twice of inter-atomic equilibrium distance. The equilibrium separation distance is about 60% of the inter-atomic equilibrium distance and adhesion force is maximum at about 80% of the inter-atomic equilibrium separation distance for both deformed and undeformed configurations. The adhesion force also increased with the deformation of cylindrical segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Half contact width

A :

Contact area

A c :

Contact area corresponding to the total force at which yielding started

A max :

Maximum contact area

c 1 :

Half width of the cylindrical segment (asperity)

c 2 :

Half width of the flat body

C :

London constant

C nr , C 0 nr   :

Non-retarded London constants

d :

Diameter of a particle

D :

Separation distance

D 1 :

Equilibrium separation distance when adhesion force is equal zero

E :

Modulus of elasticity

E p :

Modulus of linear hardening portion

F attr :

Attractive force acting between bodies

f attr1 :

Attractive force acting between two atoms

f rep1 :

Repulsive force acting between two atoms

F rep :

Repulsive force acting between bodies

F adh :

Adhesion force

F o adh :

Normalizing adhesion force

F vdW :

Van der Waals force

H 0 :

Undeformed cylindrical segment height

H 1 :

Cylindrical segment height

H 2 :

Deformed cylindrical segment height

H 3 :

Height at intersection of two radii of deformed cylindrical segment

H 4 :

Upper flat body height

H nr :

Non-retarded Hamaker constant

L :

Length of the upper/lower body

p max :

Maximum applied pressure

P :

Load applied to the upper contact body

P c :

Total load at which yielding started

P max :

Maximum load applied to the upper body

r :

Distance between individual atoms

R :

Equivalent radius, radius of the upper body cylindrical segment

R 1 :

Radius curvature of the first interacting body, undeformed segment radius

R 2 :

Radius curvature of the second interacting body, deformed segment radius

V 1, V 2 :

Volume of the lower and upper body

ν:

Poisson’s ratio

ρ1, ρ2 :

Atom concentrations (density) of the upper and lower bodies

σ s :

Yield stress

Φ:

Potential

References

  • ABAQUS Analysis User’s Manual v.6.5-1. Hibbit, Karlsson & Sorensen, Inc., Pawtucket (2005)

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford Science Publications (1989)

  • Bhushan, B. (ed.): Handbook of Micro/Nanotribology, 2nd edn. CRC press, Boca Raton (1999)

    Google Scholar 

  • Coutu, R.A. Jr., Kladitis, P.E., Starman, L.A., Reid, J.R.: A comparison of microswitch analytic, finite element, and experimental results. Sens. Actuators A 115, 252–258 (2004a)

    Article  Google Scholar 

  • Coutu, R.A.J.: Electrostatic radio frequency (RF) microelectromechanical systems (MEMS) switches with metal alloy electric contacts. Dissertation, Air Force Institute of Technology, Wright-Patterson AFB, Ohio (2004b)

  • Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformation on the adhesion of particles. J. Colloaid. Interface Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  • French, R.H.: Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 83–89, 2117–2146 (2000)

    Google Scholar 

  • Greenwood, J.A.: Adhesion of elastic spheres. Proc. R. Soc. Lond. A 453, 1277–1297 (1997)

    MATH  MathSciNet  Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic Press, Harcourt Brace & Company, Publishers, San Diego-London (1991)

    Google Scholar 

  • Jackson, R., Chusoipin, I., Green, I.: A finite element study of the residual stress and deformation in hemispherical contacts. J. Tribol. 127, 484–493 (2005)

    Article  Google Scholar 

  • Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31, 413–418 (1998)

    Article  Google Scholar 

  • Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  Google Scholar 

  • Lee, H., Coutu, R.A.J., Mall, S., Kladitis, P.E.: Nanoindentation technique for characterizing cantilever beam style RF micromechanical systems (MEMS) switches. J. Micromech. Microeng. 15, 1230–1235 (2005)

    Article  Google Scholar 

  • Lifshits, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956)

    Google Scholar 

  • Liu, T., Liu, G., Xie, Q., Wang, Q.J.: An EFG-FE coupling method for microscale adhesive contacts. Trans. ASME 128, 40–48 (2006)

    Article  Google Scholar 

  • London, F.: The general theory of molecular forces. Trans. Faraday Soc. 33, 8–26 (1937)

    Article  Google Scholar 

  • Majumder, S., McGruer, N.E., Adams, G.G., Zavracky, P.M., Morrison, R.H., Krim, G.: Study of contacts in an electrostatically actuated microswitch. Sens. Actuators A 93, 19–36 (2001)

    Article  Google Scholar 

  • Majumder, S., McGruer, N.E., Zavracky, P.M., Adams, G.G., Morrison, R.H., Krim, J.: Measurement and modeling of surface micromachined, electrostatically actuated Microswitches. In: Proceedings of the Transdusers 97 International Conference on Solid State Sensors and Actuators, pp. 1145–1148. Chicago, IL, 16–19 June 1997

  • Maugis, D.J.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid. Interface Sci. 150, 243–269 (1992)

    Article  Google Scholar 

  • Sabelkin, V., Mall, S.: Elastic–plastic multi-asperity contact analysis of cylinder-on-flat configuration. J. Tribol. 129(2), 292–304 (2007)

    Article  Google Scholar 

  • Sabelkin,V., Mall, S.: Investigation into cylinder-on-flat adhesion elastic–plastic micro-contact under repeated loading and unloading condition. Int. J. Mech. Mater. Des. 3–4, 373–388 (2007) doi:10.1007/s10999-007-9047-x (in publication).

  • Tabor, D.: Surface forces and surface interactions. J. Colloidal Interface Sci. 58, 1–13 (1976)

    Google Scholar 

  • Tianxiang, L.G.L., Qin, X., Wang, Q.J.: An EFG-FE method for microscale adhesive contacts. J. Tribol. Trans. ASME 128, 40–48 (2006)

    Article  Google Scholar 

  • Yang, J., Komvopoulos, K.: A molecular dynamic analysis of surface interference and tip shape and size effect on atomic-scale friction. J. Tribol. 127, 513–521 (2005)

    Article  Google Scholar 

  • Yu, N., Polycarpou, A.A.: Adhesive contact based on the Lennard-Jones potential: a correction to the value of the equilibrium distance as used in the potential. J. Colloid Interface Sci. 278, 428–435 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The support of this study from the U.S. Air Force is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mall.

Additional information

The views expressed in this article are those of the authors and do not reflect the official policy or position of the United State Air Force, Department of Defense, or the U.S. Government.

Appendix A: Expressions for attractive and repulsive terms of adhesion force

Appendix A: Expressions for attractive and repulsive terms of adhesion force

1.1 A.1 Undeformed bodies

$$ \begin{aligned} F_{attr}^{11} =\;& L\cdot \frac{H_{nr} }{\pi }\cdot \left( \frac{3D^{2}R_1 K_{31} }{2K_{21}^3 }+\frac{D^{2}R_1 K_{31} }{2K_{21}^3 }+\frac{2D^{2}R_1^2 K_{41} }{2K_{21}^3 }-\frac{R_1^2 K_{31}^3 }{2K_{21}^3 K_{11} }+\frac{DR_1^3 K_{41} }{2K_{21}^3 }\right. \\& +\frac{DK_{31}^3 }{2K_{21}^2 K_{11}^2 }+\frac{DR_1 K_{41} }{K_{21}^3 }+\frac{3DR_1^2 K_{31} }{2K_{21}^3 }+\frac{DR_1^2 K_{41} }{K_{21}^3 }+\frac{3DR_1^2 K_{31} }{2K_{21}^3 }+\frac{DR_1^2 K_{31} }{K_{21}^3 }+\frac{R_1 K_{31}^3 }{2K_{21}^2 K_{11}^2 }-\frac{2D^{2}R_1 K_{51} }{2K_{21}^{5/2} }\\ & +\frac{2D^{3}R_1 K_{41} }{K_{21}^3 }-\frac{DR_1 K_{31}^3 }{K_{21}^3 K_{11} }+\frac{D^{2}K_{41} }{2K_{21}^2 }+\frac{R_1 K_{31} }{2K_{21}^2 }+\frac{D^{4}K_{41} }{2K_{21}^3 }-\frac{3DR_1^2 K_{51} }{2K_{21}^{5/2} }+\frac{DK_{31} }{2K_{21}^3 }-\frac{R_1^3 K_{31} }{2K_{21}^3 }\\ & \left.-\frac{R_1^3 \cdot K_{51} }{2\cdot K_{21}^{5/2} }-\frac{K_{31}^3 }{3\cdot K_{21} \cdot K_{11}^3 }-\frac{R_1^3 \cdot K_{41} }{2\cdot K_{21}^3 }+\frac{D^{3}\cdot K_{31} }{2\cdot K_{21}^3 }-\frac{D^{3}\cdot K_{51} }{2\cdot K_{21}^{5/2} }-\frac{R_1 \cdot K_{51} }{2\cdot K_{21}^{3/2} }-\frac{DK_{51} }{2K_{21}^{5/2} }-\frac{D^{2}K_{31}^{3/2} }{2K_{21}^3 K_{11} }\right) \end{aligned} $$
(A1)
$$ \begin{aligned}F_{attr}^{12} =\;& L\frac{H_{nr} }{\pi }\left (\frac{3D^{2}R_1 K_{32} }{2K_{22}^3 }-\frac{D^{2}H_0 K_{32} }{2K_{22}^3 }+\frac{D^{2}R_1 K_{32} }{2K_{22}^3 }+\frac{2D^{2}R_1^2 K_{42}}{2K_{22}^3 }-\frac{R_1^2 K_{32}^3 }{2K_{22}^3 K_{12} }+\frac{DR_1^3 K_{42} }{2K_{22}^3 }-\frac{R_2^2 H_0 K_{32}}{2K_{22}^3}\right. \\ & +\frac{DK_{32}^3 }{2K_{22}^2 K_{12}^2 }+\frac{DR_1 K_{42}}{K_{22}^3 }+\frac{3DR_1^2 K_{32} }{2K_{22}^3 }+\frac{DR_1^2 K_{42}}{K_{22}^3 }+\frac{3DR_1^2 K_{32} }{2K_{22}^3 }+\frac{DR_1^2 K_{32}}{K_{22}^3 }+\frac{R_1 K_{32}^3 }{2K_{22}^2 K_{12}^2}-\frac{2D^{2}R_1 K_{52} }{2K_{22}^{5/2}}\\ & +\frac{2D^{3}R_1 K_{42} }{K_{22}^3 }-\frac{DR_1 K_{32}^3 }{K_{22}^3 K_{12} }-\frac{DR_1 H_0 K_{32} }{K_{22}^3 }+\frac{D^{2}K_{42} }{2K_{22}^2 }+\frac{R_1 K_{32} }{2K_{22}^2 }+\frac{D^{4}K_{42} }{2K_{22}^3 }-\frac{3DR_1^2 K_{52} }{2K_{22}^{5/2} }+\frac{DK_{32} }{2K_{22}^3 }-\frac{R_1^3 K_{32} }{2K_{22}^3 }\\ & \left.-\frac{R_1^3 K_{52} }{2K_{22}^{5/2} }-\frac{K_{32}^3 }{3K_{22} K_{12}^3 }-\frac{R_1^3 K_{42} }{2K_{22}^3 }+\frac{D^{3}K_{32} }{2K_{22}^3 }-\frac{D^{3}K_{52} }{2K_{22}^{5/2} }-\frac{R_1 K_{52} }{2K_{22}^{3/2} }-\frac{DK_{52} }{2K_{22}^{5/2} }-\frac{D^{2}K_{32}^{3/2} }{2K_{22}^3 K_{12}}\right) \end{aligned} $$
(A2)
$$ F_{attr}^{16} =\frac{2c_2 LH_{nr} \left( {-3D^{2}H_0 -3DH_0^2 -H_0^3 +3D^{2}H_4 +3DH_4^2 +H_4^3 } \right)}{6\pi (D+H_4 )^{3}(D+H_0 )^{3}} $$
(A3)

where

$$ K_{11}=D $$
(A4)
$$ K_{21} =-D(D+2R_1) $$
(A5)
$$ K_{31} =[-K_{11}^2 +(2R_1 +2D)\cdot K_{11} -D^{2}-2R_1 D]^{1/2} $$
(A6)
$$ K_{41} =\arctan \frac{-R_1 }{K_{31}} $$
(A7)
$$ K_{51}=\hbox{arctanh}\;\frac{-2D^{2}-4R_1 D+(2D+2R_1 )\cdot K_{11} }{2\cdot K_{21}^{1/2} \cdot K_{31}} $$
(A8)
$$ K_{12} =D+H_0 $$
(A9)
$$ K_{22} =-D(D+2R_1) $$
(A10)
$$ K_{32} =[-K_{12}^2 +(2R_1 +2D)\cdot K_{12} -D^{2}-2R_1 D]^{1/2} $$
(A11)
$$ K_{42} =\arctan \frac{H_0 -R_1 }{K_{32}} $$
(A12)
$$ K_{52}=\hbox{arctanh}\frac{-2D^{2}-4R_1 D+(2D+2R_1 )\cdot K_{12} }{2\cdot K_{22}^{1/2}\cdot K_{32}} $$
(A13)
$$ F_{rep}=(F_{rep}^{12} -F_{rep}^{11} )+F_{rep}^{16} $$
(A14)

where

$$ F_{rep}^{12} -F_{rep}^{11} =-L\frac{2H_{nr} \sigma ^{6}}{5\pi }\int\limits_0^{H_0 } {\frac{\sqrt{2R_1 h-h^{2}}}{(D+h)^{10}}}{\rm d}h $$
(A15)
$$ F_{rep}^{16} =-\frac{2c_2 LH_{nr} \sigma ^{6}}{5\pi }\int\limits_{H_0 }^{H_4 } {\frac{{\rm d}h}{(D+h)^{10}}} $$
(A16)

1.2 A.2 Deformed bodies

$$ \begin{aligned}F_{attr}^{17}=\;& L\cdot \frac{H_{nr} }{\pi }\cdot \left( \frac{3D^{2}R_2 K_{37} }{2K_{27}^3 }+\frac{D^{2}R_2 K_{37} }{2K_{27}^3 }+\frac{2D^{2}R_2^2 K_{47} }{2K_{27}^3 }-\frac{R_2^2 K_{37}^3 }{2K_{27}^3 K_{17} }+\frac{DR_2^3 K_{47} }{2K_{27}^3 }\right. \\ & +\frac{DK_{37}^3 }{2K_{27}^2 K_{17}^2 }+\frac{DR_2 K_{47} }{K_{27}^3 }+\frac{3DR_2^2 K_{37} }{2K_{27}^3 }+\frac{DR_2^2 K_{47} }{K_{27}^3 }+\frac{3DR_2^2 K_{37} }{2K_{27}^3 }+\frac{DR_2^2 K_{37} }{K_{27}^3 }+\frac{R_2 K_{37}^3 }{2K_{27}^2 K_{17}^2 }-\frac{2D^{2}R_2 K_{57} }{2K_{27}^{5/2} }\\ & +\frac{2D^{3}R_2 K_{47} }{K_{27}^3 }-\frac{DR_2 K_{37}^3 }{K_{27}^3 K_{17} }+\frac{D^{2}K_{47} }{2K_{27}^2 }+\frac{R_2 K_{37} }{2K_{27}^2 }+\frac{D^{4}K_{47} }{2K_{27}^3 }-\frac{3DR_2^2 K_{57} }{2K_{27}^{5/2} }+\frac{DK_{37} }{2K_{27}^3 }-\frac{R_2^3 K_{37} }{2K_{27}^3 }\\ & \left. -\frac{R_2^3 \cdot K_{57} }{2\cdot K_{27}^{5/2} }-\frac{K_{37}^3 }{3\cdot K_{27} \cdot K_{17}^3 }-\frac{R_2^3 \cdot K_{47} }{2\cdot K_{27}^3 }+\frac{D^{3}\cdot K_{37} }{2\cdot K_{27}^3 }-\frac{D^{3}\cdot K_{57} }{2\cdot K_{27}^{5/2} }-\frac{R_2 \cdot K_{57} }{2\cdot K_{27}^{3/2} }-\frac{DK_{57} }{2K_{27}^{5/2} }-\frac{D^{2}K_{37}^{3/2} }{2K_{27}^3 K_{17}}\right) \end{aligned} $$
(A17)
$$ \begin{aligned} F_{attr}^{18}=\;& L\frac{H_{nr} }{\pi }\left (\frac{3D^{2}R_2 K_{38} }{2K_{28}^3 }-\frac{D^{2}H_1 K_{38} }{2K_{28}^3 }+\frac{D^{2}R_2 K_{38} }{2K_{28}^3 }+\frac{2D^{2}R_2^2 K_{48} }{2K_{28}^3 }-\frac{R_2^2 K_{38}^3 }{2K_{28}^3 K_{18} }+\frac{DR_2^3 K_{48} }{2K_{28}^3 }-\frac{R_2^2 H_1 K_{38}}{2K_{28}^3}\right. \\ & +\frac{DK_{38}^3 }{2K_{28}^2 K_{18}^2 }+\frac{DR_2 K_{48} }{K_{28}^3 }+\frac{3DR_2^2 K_{38} }{2K_{28}^3 }+\frac{DR_2^2 K_{48} }{K_{28}^3 }+\frac{3DR_2^2 K_{38} }{2K_{28}^3 }+\frac{DR_2^2 K_{38} }{K_{28}^3 }+\frac{R_2 K_{38}^3 }{2K_{28}^2 K_{18}^2 }-\frac{2D^{2}R_2 K_{58} }{2K_{28}^{5/2} }\\ & +\frac{2D^{3}R_2 K_{48} }{K_{28}^3 }-\frac{DR_2 K_{38}^3 }{K_{28}^3 K_{18} }-\frac{DR_2 H_1 K_{38} }{K_{28}^3 }+\frac{D^{2}K_{48} }{2K_{28}^2 }+\frac{R_2 K_{38} }{2K_{28}^2 }+\frac{D^{4}K_{48} }{2K_{28}^3 }-\frac{3DR_2^2 K_{58} }{2K_{28}^{5/2} }+\frac{DK_{38} }{2K_{28}^3 }-\frac{R_2^3 K_{38} }{2K_{28}^3 }\\ & \left. -\frac{R_2^3 K_{58} }{2K_{28}^{5/2} }-\frac{K_{38}^3 }{3K_{28} K_{18}^3 }-\frac{R_2^3 K_{48} }{2K_{28}^3 }+\frac{D^{3}K_{38} }{2K_{28}^3 }-\frac{D^{3}K_{58} }{2K_{28}^{5/2} }-\frac{R_2 K_{58} }{2K_{28}^{3/2} }-\frac{DK_{58} }{2K_{28}^{5/2} }-\frac{D^{2}K_{38}^{3/2} }{2K_{28}^3 K_{18}}\right) \end{aligned} $$
(A18)
$$ \begin{aligned}F_{attr}^{13} =\;& L\frac{H_{nr} }{\pi } \left (\frac{3D^{2}R_1 K_{33} }{2K_{23}^3 }-\frac{D^{2}H_1 K_{33} }{2K_{23}^3 }+\frac{D^{2}R_1 K_{33} }{2K_{23}^3 }+\frac{2D^{2}R_1^2 K_{43} }{2K_{23}^3 }-\frac{R_1^2 K_{33}^3 }{2K_{23}^3 K_{13} }+\frac{DR_1^3 K_{43} }{2K_{23}^3 }-\frac{R_1^2 H_1 K_{33}}{2K_{23}^3}\right. \\ & +\frac{DK_{33}^3 }{2K_{23}^2 K_{13}^2 }+\frac{DR_1 K_{43} }{K_{23}^3 }+\frac{3DR_1^2 K_{33} }{2K_{23}^3 }+\frac{DR_1^2 K_{43} }{K_{23}^3 }+\frac{3DR_1^2 K_{33} }{2K_{23}^3 }+\frac{DR_1^2 K_{33} }{K_{23}^3 }+\frac{R_1 K_{33}^3 }{2K_{23}^2 K_{13}^2 }-\frac{2D^{2}R_1 K_{53} }{2K_{23}^{5/2} }\\ & +\frac{2D^{3}R_1 K_{43} }{K_{23}^3 }-\frac{DR_1 K_{33}^3 }{K_{23}^3 K_{13} }-\frac{DR_1 H_1 K_{33} }{K_{23}^3 }+\frac{D^{2}K_{43} }{2K_{23}^2 }+\frac{R_1 K_{33} }{2K_{23}^2 }+\frac{D^{4}K_{43} }{2K_{23}^3 }-\frac{3DR_1^2 K_{53} }{2K_{23}^{5/2} }+\frac{DK_{33} }{2K_{23}^3 }-\frac{R_1^3 K_{33} }{2K_{23}^3 }\\ & \left. -\frac{R_1^3 K_{53} }{2K_{23}^{5/2} }-\frac{K_{33}^3 }{3K_{23} K_{13}^3 }-\frac{R_1^3 K_{43} }{2K_{23}^3 }+\frac{D^{3}K_{33} }{2K_{23}^3 }-\frac{D^{3}K_{53} }{2K_{23}^{5/2} }-\frac{R_1 K_{53} }{2K_{23}^{3/2} }-\frac{DK_{53} }{2K_{23}^{5/2} }-\frac{D^{2}K_{33}^{3/2} }{2K_{23}^3 K_{13}}\right) \end{aligned} $$
(A19)
$$ \begin{aligned} F_{attr}^{14} =\;& L\frac{H_{nr} }{\pi }\left (\frac{3D^{2}R_1 K_{34} }{2K_{24}^3 }-\frac{D^{2}H_2 K_{34} }{2K_{24}^3 }+\frac{D^{2}R_1 K_{34} }{2K_{24}^3 }+\frac{2D^{2}R_1^2 K_{44} }{2K_{24}^3 }-\frac{R_1^2 K_{34}^3 }{2K_{24}^3 K_{14} }+\frac{DR_1^3 K_{44} }{2K_{24}^3 }-\frac{R_1^2 H_2 K_{34}}{2K_{24}^3 }\right. \\ & +\frac{DK_{34}^3 }{2K_{24}^2 K_{14}^2 }+\frac{DR_1 K_{44} }{K_{24}^3 }+\frac{3DR_1^2 K_{34} }{2K_{24}^3 }+\frac{DR_1^2 K_{44} }{K_{24}^3 }+\frac{3DR_1^2 K_{34} }{2K_{24}^3 }+\frac{DR_1^2 K_{34} }{K_{24}^3 }+\frac{R_1 K_{34}^3 }{2K_{24}^2 K_{14}^2 }-\frac{2D^{2}R_1 K_{54} }{2K_{24}^{5/2} }\\ & +\frac{2D^{3}R_1 K_{44} }{K_{24}^3 }-\frac{DR_1 K_{34}^3 }{K_{24}^3 K_{14} }-\frac{DR_1 H_2 K_{34} }{K_{24}^3 }+\frac{D^{2}K_{44} }{2K_{24}^2 }+\frac{R_1 K_{34} }{2K_{24}^2 }+\frac{D^{4}K_{44} }{2K_{24}^3 }-\frac{3DR_1^2 K_{54} }{2K_{24}^{5/2} }+\frac{DK_{34} }{2K_{24}^3 }-\frac{R_1^3 K_{34} }{2K_{24}^3 }\\ & \left. -\frac{R_1^3 K_{54} }{2K_{24}^{5/2} }-\frac{K_{34}^3 }{3K_{24} K_{14}^3 }-\frac{R_1^3 K_{44} }{2K_{24}^3 }+\frac{D^{3}K_{34} }{2K_{24}^3 }-\frac{D^{3}K_{54} }{2K_{24}^{5/2} }-\frac{R_1 K_{54} }{2K_{24}^{3/2} }-\frac{DK_{54} }{2K_{24}^{5/2} }-\frac{D^{2}K_{34}^{3/2} }{2K_{24}^3 K_{14}}\right) \end{aligned} $$
(A20)
$$ F_{attr}^{15} =\frac{LH_{nr} }{\pi }\int\limits_{H_2 }^{H_4 } \frac{c_2 {\rm d}h}{(D+h)^{3}}=\frac{2c_2 LH_{nr} \left( {-3D^{2}H_2 -3DH_2^2-H_2^3 +3D^{2}H_4 +3DH_4^2 +H_4^3 } \right)}{6\pi (D+H_4 )^{3}(D+H_2)^{3}} $$
(A21)

where

$$ K_{17}=D $$
(A22)
$$ K_{27} =-D(D+2R_2) $$
(A23)
$$ K_{37} =[-K_{17}^2 +(2R_2 +2D)\cdot K_{17} -D^{2}-2R_2 D]^{1/2} $$
(A24)
$$ K_{47} =\arctan \frac{-R_2 }{K_{37}} $$
(A25)
$$ K_{57}=\hbox{arctanh}\frac{-2D^{2}-4R_2 D+(2D+2R_2 )\cdot K_{17} }{2\cdot K_{27}^{1/2}\cdot K_{37}} $$
(A26)
$$ K_{18} =D+H_1 $$
(A27)
$$ K_{28} =-D(D+2R_2) $$
(A28)
$$ K_{38} =[-K_{18}^2 +(2R_2 +2D)\cdot K_{18} -D^{2}-2R_2 D]^{1/2} $$
(A29)
$$ K_{48} =\arctan \frac{H_1 -R_2 }{K_{38}} $$
(A30)
$$ K_{58}=\hbox{arctanh}\frac{-2D^{2}-4R_2 D+(2D+2R_2 )\cdot K_{18} }{2\cdot K_{28}^{1/2} \cdot K_{38}} $$
(A31)
$$ K_{13} =D+H_1 $$
(A32)
$$ K_{23} =-D(D+2R_1) $$
(A33)
$$ K_{33} =[-K_{13}^2 +(2R_1 +2D)\cdot K_{13} -D^{2}-2R_1 D]^{1/2} $$
(A34)
$$ K_{43} =\arctan \frac{H_1 -R_1 }{K_{33}} $$
(A35)
$$ K_{53}=\hbox{arctanh}\frac{-2D^{2}-4R_1 D+(2D+2R_1 )\cdot K_{13} }{2\cdot K_{23}^{1/2}\cdot K_{33}} $$
(A36)
$$ K_{14} =D+H_2 $$
(A37)
$$ K_{24} =-D(D+2R_1) $$
(A38)
$$ K_{34} =[-K_{14}^2 +(2R_1 +2D)\cdot K_{14} -D^{2}-2R_1 D]^{1/2} $$
(A39)
$$ K_{44} =\arctan \frac{H_2 -R_1 }{K_{34}} $$
(A40)
$$ K_{54}=\hbox{arctanh}\frac{-2D^{2}-4R_1 D+(2D+2R_1 )\cdot K_{14} }{2\cdot K_{24}^{1/2}\cdot K_{34}} $$
(A41)

The repulsive force for loaded, plastically deformed and unloaded bodies is expressed as

$$ F_{rep}=(F_{rep}^{18} -F_{rep}^{17} )+(F_{rep}^{14} -F_{rep}^{13} )+F_{rep}^{15} $$
(A42)

where

$$ F_{rep}^{18} -F_{rep}^{17} =-L\frac{2H_{nr} \sigma ^{6}}{5\pi }\int\limits_0^{H_1 } {\frac{\sqrt{2R_2 h-h^{2}}}{(D+h)^{10}}} {\rm d}h $$
(A43)
$$ F_{rep}^{14} -F_{rep}^{13} =-L\frac{2H_{nr} \sigma ^{6}}{5\pi }\int\limits_{H_1 }^{H_2 } {\frac{\sqrt{2R_1 h-h^{2}}}{(D+h)^{10}}} {\rm d}h $$
(A44)
$$ F_{rep}^{15} =-\frac{2c_2 LH_{nr} \sigma ^{6}}{5\pi }\int\limits_{H_2 }^{H_4 } {\frac{{\rm d}h}{(D+h)^{10}}} $$
(A45)

For the sake of brevity, the following repulsive force expressions can be written as:

$$ \begin{aligned} F_{rep}^{1i} =& -L\frac{2H_{nr} \sigma ^{6}}{5\pi }\cdot \left (-\frac{16K_{3i}^3 }{315K_{2i}^4 K_{1i}^3 }+\frac{693R_k^5 K_{3i} }{64K_{2i}^7 }-\frac{15015R_k^2 D^{4}K_{3i}^3 }{128K_{2i}^8 }+\frac{5005R_k^2 D^{3}K_{3i}^3 }{64K_{2i}^7 K_{1i}^2 }-\sigma \right. \\ & -\frac{15015R_k^4 D^{3}K_{3i}^3 }{128K_{2i}^8 K_{1i}}-\frac{143R_k^3 DK_{3i}^3 }{8K_{2i}^6 K_{1i}^3 }-\frac{5005R_k^3 D^{3}K_{3i} H_j }{32K_{2i}^8 }-\frac{5005R_k^3 D^{3}K_{3i}^3 }{32K_{2i}^8 K_{1i}}+ \frac{1155R_k^2 DK_{3i}^3 }{128K_{2i}^6 K_{1i}^2 }\\ & +\frac{3003R_k^5 DK_{3i}^3 }{64K_{2i}^8 K_{1i}}-\frac{105R_k^3 K_{5i} }{32K_{2i}^{11/2} }-\frac{1155R_k^2 D^{2}K_{3i}^3 }{64K_{2i}^7 K_{1i} }+\frac{35R_k^2 K_{4i}}{128K_{2i}^5 }+\frac{1001R_k^6 K_{4i}}{128K_{2i}^7 }\\ & +\frac{385R_k^4 K_{4i}}{128K_{2i}^6 }-\frac{429R_k^2 D^{2}K_{3i}^3 }{16K_{2i}^6 K_{1i}^3 }+\frac{5005R_k^4 DK_{3i}^3 }{128K_{2i}^7 K_{1i}^2 }+\frac{385R_k^3 DK_{3i}^3 }{32K_{2i}^7 K_{1i} }+\frac{715R_k^2 DK_{3i}^3 }{336K_{2i}^4 K_{1i}^6 }\\ & -\frac{5005R_k^2 D^{6}K_{3i}^3 }{32K_{2i}^9 K_{1i} }+\frac{15015R_k^2 D^{5}K_{3i}^3 }{128K_{2i}^8 K_{1i}^2 }+\frac{715R_k^8 K_{4i} }{128K_{2i}^8 K_{1i}^2 }-\frac{3003R_k^5 DH_j K_{3i} }{64K_{2i}^8 }+\frac{385R_k^5 K_{3i} }{128K_{2i}^7 }\\ & -\frac{15015R_k^4 D^{2}H_j K_{3i} }{128K_{2i}^8 }-\frac{5005R_k^6 D^{2}H_j K_{3i}^3 }{32K_{2i}^9 K_{1i} }+\frac{7293R_k^2 DK_{3i}^3 }{1120K_{2i}^5 K_{1i}^4 }+\frac{25025R_k^4 D^{3}K_{3i}^3 }{128K_{2i}^8 K_{1i}^2 }+\frac{715R_k^2 D^{3}K_{3i}^3 }{32K_{2i}^6 K_{1i}^4} \\ & -\frac{715R_k^9 K_{3i} }{128K_{2i}^9} +\frac{429R_k^7 K_{3i}}{32K_{2i}^8 }+\frac{1001R_k^7 K_{3i}}{128K_{2i}^8 }+\frac{25025R_k^3 D^{4}K_{3i}^3}{128K_{2i}^8 K_{1i}^2}-\frac{5005R_k^2 D^{6}H_j K_{3i}}{32K_{2i}^9 } \\ & -\frac{715R_k^7 DH_j K_{3i} }{16K_{2i}^9 }+\frac{5005R_k^6 DK_{3i}^3 }{128K_{2i}^8 K_{1i}^2 }-\frac{5005R_k^6 D^{2}H_j K_{3i}}{32K_{2i}^9 }+\frac{45045R_k^3 D^{5}K_{4i}}{64K_{2i}^8 }-\frac{715R_k^7 DK_{3i}^3 }{16K_{2i}^9 K_{1i} }\\ & +\frac{35R_k^3 K_{3i} }{128K_{2i}^6 }+\frac{5005R_k^5 D^{3}H_j K_{3i}}{16K_{2i}^9 }-\frac{715R_k^5 DK_{3i}^3 }{32K_{2i}^7 K_{1i}^3 }-\frac{25025R_k^4 D^{4}K_{3i}^3 }{64K_{2i}^9 K_{1i} }+\frac{35R_k K_{3i}^3 }{128K_{2i}^5 K_{1i}^2 }\\ & +\frac{35D^{2}K_{4i} }{128K_{2i}^5 }-\frac{2871D^{2}K_{3i} }{2240K_{2i}^5 }-\frac{715R_k^5 DK_{3i}^3 }{32K_{2i}^7 K_{1i}^3 }-\frac{3575R_k^4 D^{2}K_{3i}^3 }{64K_{2i}^7 K_{1i}^3 }-\frac{715R_k^9 K_{5i}}{128K_{2i}^{17/2} }-\frac{5005R_k^5 D^{3}K_{3i}^3 }{16K_{2i}^9 K_{1i}}\\ & +\frac{15015R_k^5 D^{2}K_{3i}^3 }{128K_{2i}^8 K_{1i}^2 }+\frac{1155R_k^4 D^{2}K_{4i}}{8K_{2i}^7 }+\frac{847R_k^5 DK_{4i}}{16K_{2i}^7 }-\frac{429D^{7}K_{5i}}{32K_{2i}^7 K_{1i}^3 }-\frac{715R_k^9 K_{5i}}{128K_{2i}^{15/2} }+\frac{385R_k^2 D^{3}K_{3i}}{32K_{2i}^7 }\\ & -\frac{15015R_k^3 D^{4}K_{5i}}{32K_{2i}^{15/2} }+\frac{715R_k^3 D^{2}K_{3i}^3 }{32K_{2i}^6 K_{1i}^4 }-\frac{385R_k^4 K_{3i}^3 }{128K_{2i}^7 K_{1i}}+\frac{385R_k^4 DK_{3i}}{32K_{2i}^7 }+\frac{1155R_k^3 D^{2}K_{3i}}{64K_{2i}^7 }+\frac{1001R_k^5 K_{3i}^3 }{128K_{2i}^7 K_{1i}^2 }\\ & +\frac{385R_k^3 K_{3i}^3 }{128K_{2i}^6 K_{1i}^2 }-\frac{143R_k^3 DK_{3i}^3 }{28K_{2i}^5 K_{1i}^5 }-\frac{385R_k^4 H_j K_{3i}}{128K_{2i}^7 }+\frac{5005R_k^7 D^{2}K_{3i}}{32K_{2i}^9 }-\frac{3575R_k^3 D^{3}K_{3i}^3 }{48K_{2i}^7 K_{1i}^3 }-\frac{9009R_k^2 D^{5}K_{5i}}{32K_{2i}^{15/2} K_{1i}^2}\\ & +\frac{715R_k^4 DK_{3i}^3 }{64K_{2i}^6 K_{1i}^4 }-\frac{315R_k^2 DK_{5i}}{32K_{2i}^{11/2} }-\frac{1001R_k^6 K_{3i}^3 }{128K_{2i}^8 K_{1i} }-\frac{6435R_k^2 D^{7}K_{5i}}{32K_{2i}^{17/2} }-\frac{1573R_k^2 K_{3i}^3 }{1680K_{2i}^4 K_{1i}^5 }+\frac{805R_k^3 DK_{4i}}{64K_{2i}^6 }\\ & -\frac{429R_k^2 D^{2}K_{3i}^3 }{56K_{2i}^5 K_{1i}^5 }-\frac{5005R_k^3 D^{5}H_j K_{3i}}{16K_{2i}^9}-\frac{5005R_k^3 D^{5}K_{3i}^3 }{16K_{2i}^9 K_{1i}}-\frac{25025R_k^4 D^{4}H_j K_{3i}}{64K_{2i}^9 }-\frac{6435R_k^7 D^{2}K_{5i}}{32K_{2i}^{17/2} }\\ & +\frac{15015R_k^3 D^{4}K_{3i}}{128K_{2i}^8 }-\frac{693D^{5}K_{5i} }{64K_{2i}^{13/2}}-\frac{143R_k^4 K_{3i}^3 }{32K_{2i}^6 K_{1i}^3 }+\frac{15015R_k^6 D^{3}K_{3i}}{32K_{2i}^9 }-\frac{6435R_k^8 DK_{5i} }{128K_{2i}^{17/2}}-\frac{3465R_k^2 D^{3}K_{5i} }{32K_{2i}^{13/2}}\\ & +\frac{3465R_k^2 D^{3}K_{3i}}{32K_{2i}^7 }+\frac{105D^{4}K_{4i}}{32K_{2i}^6 }-\frac{1001R_k^6 H_j K_{3i}}{128K_{2i}^8}-\frac{45045R_k^4 D^{5}K_{5i}}{64K_{2i}^{17/2} }-\frac{45045R_k^5 D^{4}K_{5i}}{64K_{2i}^{17/2} }\\ & -\frac{15015R_k^3 D^{6}K_{5i}}{32K_{2i}^{17/2} }-\frac{2871R_k^2 K_{3i}^3 }{2240K_{2i}^5 K_{1i}^3 }-\frac{35D^{2}K_{3i}^3 }{128K_{2i}^6 K_{1i} }+\frac{715R_k^9 K_{3i}}{128K_{2i}^9 }-\frac{15015R_k^4 D^{3}K_{3i}}{32K_{2i}^8 }+\frac{315R_k^2 DK_{3i} }{32K_{2i}^6 }\\ & -\frac{15015R_k^6 D^{3}K_{5i}}{32K_{2i}^{17/2} }+\frac{1515R_k^3 D^{6}K_{3i}}{32K_{2i}^9 }+\frac{105105R_k^4 D^{4}K_{4i}}{128K_{2i}^8 }+\frac{9009R_k^5 D^{2}K_{3i}}{32K_{2i}^8 }-\frac{715R_k^8 H_j K_{3i}}{128K_{2i}^9 }\\ & +\frac{2431R_k^3 K_{3i}^3 }{1120K_{2i}^5 K_{1i}^4 }+\frac{1515R_k^3 D^{4}K_{3i}}{32K_{2i}^8 }+\frac{3003R_k^6 DK_{3i}}{64K_{2i}^8 }+\frac{35DK_{3i}}{128K_{2i}^5 }-\frac{693R_k^5 K_{5i}}{64K_{2i}^{13/2} }+\frac{5005R_k^3 D^{7}K_{4i} }{8K_{2i}^9 }\\ & -\frac{35R_k^2 K_{3i}^3 }{128K_{2i}^6 K_{1i}}+\frac{9009R_k^2 D^{5}K_{3i}}{32K_{2i}^8 }-\frac{3465R_k D^{4}K_{5i}}{64K_{2i}^{13/2} }+\frac{693D^{5}K_{3i}}{64K_{2i}^7 }+\frac{20405R_k^2 D^{4}K_{4i}}{128K_{2i}^7 }\\ & +\frac{15015R_k^5 D^{2}K_{3i}}{128K_{2i}^8 }+\frac{429D^{8}K_{4i}}{32K_{2i}^8 }+\frac{6435R_k^7 D^{2}K_{3i}}{32K_{2i}^9 }+\frac{47047R_k^2 D^{6}K_{4i}}{128K_{2i}^8 }+\frac{35R_k^2 DK_{3i}}{64K_{2i}^6 }\\ & +\frac{3003R_k^2 D^{5}K_{3i}}{64K_{2i}^8 }+\frac{2485R_k^2 D^{2}K_{4i}}{128K_{2i}^6 }-\frac{3861R_k^7 DK_{4i}}{64K_{2i}^8 }-\frac{9009R_k^5 D^{2}K_{5i}}{32K_{2i}^{15/2} }-\frac{65D^{2}K_{3i}^3 }{168K_{2i}^3 K_{1i}^7 }-\frac{35R_k^2 H_j K_{3i} }{128K_{2i}^6 }\\ & -\frac{429R_k^7 K_{5i}}{32K_{2i}^{15/2} }+\frac{19019R_k^5 D^{3}K_{4i}}{32K_{2i}^8 }+\frac{5005R_k^4 D^{3}K_{3i}}{32K_{2i}^8 }-\frac{385D^{4}K_{3i}^3 }{128K_{2i}^7 K_{1i} }-\frac{385D^{4}H_j K_{3i}}{128K_{2i}^7 }-\frac{15015R_k^4 D^{3}K_{5i} }{32K_{2i}^{15/2} }\\ & +\frac{385D^{3}K_{3i}^3 }{128K_{2i}^6 K_{1i}^2 }-\frac{105D^{3}K_{5i}}{32K_{2i}^{11/2} }+\frac{35R_k D^{2}K_{3i}}{128K_{2i}^6 }+\frac{385R_k D^{4}K_{3i}}{128K_{2i}^7 }+\frac{6435R_k^2 D^{7}K_{3i}}{32K_{2i}^9 }+\frac{33033R_k^6 D^{2}K_{4i} }{128K_{2i}^8 }\\ & -\frac{143D^{4}K_{3i}^3 }{112K_{2i}^5 K_{1i}^5 }-\frac{3465R_k^4 DK_{5i}}{64K_{2i}^{13/2} }-\frac{715D^{6}K_{3i}^3 }{192K_{2i}^7 K_{1i}^3 }+\frac{715D^{7}K_{3i}^3 }{128K_{2i}^8 K_{1i}^2 }-\frac{715D^{8}H_j K_{3i}}{128K_{2i}^9 }-\frac{35D^{2}H_j K_{3i} }{128K_{2i}^6 }\\ & +\frac{143D^{5}K_{3i}^3 }{64K_{2i}^6 K_{1i}^4 }-\frac{3575R_k^2 D^{4}K_{3i}^3 }{64K_{2i}^7 K_{1i}^3 }-\frac{1573D^{2}K_{3i}^3 }{1680K_{2i}^4 K_{1i}^5 }+\frac{2651DK_{3i}^3 }{6720K_{2i}^4 K_{1i}^4 }+\frac{715R_k D^{8}K_{3i}}{128K_{2i}^9 }-\frac{715D^{8}K_{3i}^3 }{128K_{2i}^9 K_{1i} }\\ & +\frac{5005R_k D^{4}K_{3i}^3 }{128K_{2i}^7 K_{1i}^2 }+\frac{12155R_k^8 D^{2}K_{4i}}{128K_{2i}^9 }-\frac{3465R_k^3 D^{2}K_{5i}}{32K_{2i}^{13/2} }+\frac{5DK_{3i}^3 }{24K_{2i}^2 K_{1i}^8 }+\frac{39DK_{3i}}{112K_{2i}^3 K_{1i}^6 }+\frac{25025R_k^5 D^{4}K_{3i}}{64K_{2i}^9 }\\ & +\frac{3003R_k^6 DK_{3i}}{32K_{2i}^8 }+\frac{5005R_k^3 D^{6}K_{3i}}{32K_{2i}^9 }+\frac{35DK_{3i}^3 }{128K_{2i}^5 K_{1i}^2 }-\frac{65R_k^2 K_{3i}^3 }{168K_{2i}^3 K_{1i}^7 }-\frac{715D^{9}K_{5i}}{128K_{2i}^{17/2} }-\frac{3003R_k D^{5}H_j K_{3i}}{64K_{2i}^8 }\\ & +\frac{2079R_k D^{5}K_{4i}}{32K_{2i}^7 }-\frac{143R_k D^{3}K_{3i}^3 }{8K_{2i}^6 K_{1i}^3 }+\frac{105D^{3}K_{3i}}{32K_{2i}^6 }-\frac{2871R_k DK_{3i}^3 }{1120K_{2i}^5 K_{1i}^3 }-\frac{715R_k^8 K_{3i}^3 }{128K_{2i}^9 K_{1i}}+\frac{7293R_k D^{2}K_{3i}^3 }{1120K_{2i}^5 K_{1i}^4 }\\ & -\frac{1573R_k DK_{3i}^3 }{840K_{2i}^4 K_{1i}^5 }+\frac{25025R_k^6 D^{4}K_{4i}}{32K_{2i}^9 }+\frac{39R_k K_{3i}^3 }{112K_{2i}^3 K_{1i}^6 }+\frac{3575R_k D^{9}K_{4i}}{64K_{2i}^9 }+\frac{7865R_k^2 D^{8}K_{4i}}{32K_{2i}^9 }\\ & +\frac{6435R_k D^{8}K_{3i}}{128K_{2i}^9 }+\frac{715R_k^2 D^{7}K_{3i}}{16K_{2i}^9 }+\frac{5R_k K_{3i}^3 }{24K_{2i}^2 K_{1i}^8 }+\frac{715D^{3}K_{3i}^3 }{1008K_{2i}^4 K_{1i}^6 }-\frac{35R^k K_{5i}}{128K_{2i}^{9/2} }-\frac{715R_k D^{7}K_{3i}^3 }{16K_{2i}^9 K_{1i}}\\ & +\frac{65065R_k^4 D^{6}K_{4i}}{64K_{2i}^9 }-\frac{715R_k D^{5}K_{3i}^3 }{32K_{2i}^7 K_{1i}^3 }+\frac{5005R_k D^{6}K_{3i}^3 }{128K_{2i}^8 K_{1i}^2 }-\frac{715R_k^6 K_{3i}^3 }{192K_{2i}^7 K_{1i}^3 }-\frac{385R_k D^{3}K_{3i}^3 }{32K_{2i}^7 K_{1i} }+\frac{715D^{10}K_{4i}}{128K_{2i}^9 }\\ & -\frac{3003R_k D^{6}K_{5i}}{32K_{2i}^{15/2} }-\frac{3003R_k D^{5}K_{3i}^3 }{64K_{2i}^8 K_{1i}}+\frac{715D^{9}K_{3i}}{128K_{2i}^9 }-\frac{315R_k D^{2}K_{5i}}{32K_{2i}^{11/2} }-\frac{35DK_{5i}}{128K_{2i}^9 }+\frac{6435R_k^8 DK_{3i}}{128K_{2i}^9 }\\ & -\frac{65R_k DK_{3i}^3 }{84K_{2i}^3 K_{1i}^7 }+\frac{1155R_k D^{2}K_{3i}^3 }{128K_{2i}^6 K_{1i}^2 }+\frac{143R_k^5 K_{3i}^3 }{64K_{2i}^6 K_{1i}^4 }+\frac{3003R_k D^{6}K_{3i}}{32K_{2i}^8 }-\frac{1155R_k^2 D^{2}H_j K_{3i}}{64K_{2i}^7 }+\frac{429D^{7}K_{3i}}{32K_{2i}^8 }\\ & +\frac{2651R_k K_{3i}^3 }{6720K_{2i}^4 K_{1i}^4 }+\frac{429R_k D^{7}K_{4i}}{4K_{2i}^8 }+\frac{715R_k^8 DK_{3i}}{16K_{2i}^9 }-\frac{35R_k DK_{3i}^3 }{64K_{2i}^6 K_{1i} }-\frac{35R_k DH_j K_{3i}}{64K_{2i}^6 }+\frac{5005R_k^6 D^{3}K_{3i}}{16K_{2i}^9 }\\ & -\frac{385R_k D^{3}H_j K_{3i}}{32K_{2i}^7 }+\frac{105R_k D^{3}K_{4i}}{8K_{2i}^6 }+\frac{45045R_k^4 D^{5}K_{3i}}{64K_{2i}^9 }+\frac{1001D^{5}K_{3i}^3 }{128K_{2i}^7 K_{1i}^2 }-\frac{1001D^{6}H_j K_{3i}}{128K_{2i}^8 }-\frac{143D^{4}K_{3i}^3 }{32K_{2i}^6 K_{1i}^3 }\\ & +\frac{2431D^{3}K_{3i}^3 }{1120K_{2i}^5 K_{1i}^4 }-\frac{K_{3i}^3 }{9K_{2i} K_{1i}^9 }-\frac{143R_k D^{3}K_{3i}^3 }{28K_{2i}^5 K_{1i}^5 }-\frac{715R_k D^{7}H_j K_{3i}}{16K_{2i}^9 }-\frac{8K_{3i}^3 }{105K_{2i}^3 K_{1i}^5 }+\frac{693D^{6}K_{4i}}{64K_{2i}^7}\\ & +\frac{105R_k^3 K_{3i}}{32K_{2i}^6 }-\frac{6435R_k D^{8}K_{5i}}{128K_{2i}^{17/2} }-\frac{2K_{3i}^3 }{21K_{2i}^2 K_{1i}^7 }-\frac{385R_k^3 DH_j K_{3i}}{32K_{2i}^7 }+\frac{1001R_k D^{6}K_{3i}}{128K_{2i}^8 }-\frac{15015R_k^2 D^{4}H_j K_{3i}}{128K_{2i}^8 }\\ & +\frac{35R_k K_{3i}}{128K_{2i}^5 }+\frac{315R_k D^{2}K_{3i}}{32K_{2i}^6 }+\frac{6545R_k^3 D^{3}K_{4i}}{32K_{2i}^7 }+\frac{715R_k^7 D^{3}K_{4i}}{2K_{2i}^9 }-\frac{143R_k^4 K_{3i}^3 }{112K_{2i}^5 K_{1i}^5 }+\frac{45045R_k^5 D^{4}K_{3i}}{64K_{2i}^9 }\\ & +\frac{5005R_k^4 D^{5}K_{3i}}{16K_{2i}^9 }+\frac{3465R_k D^{4}K_{3i}}{64K_{2i}^7 }+\frac{715R_k^9 DK_{4i}}{64K_{2i}^9 }+\frac{3465R_k^4 DK_{3i}}{64K_{2i}^7 }+\frac{35035R_k^5 D^{5}K_{4i}}{32K_{2i}^9 }\\ & +\frac{3465R_k^3 D^{2}K_{3i}}{32K_{2i}^7 }+\frac{715R_k D^{4}K_{3i}^3 }{64K_{2i}^6 }+\frac{715R_k D^{2}K_{3i}^3 }{336K_{2i}^4 K_{1i}^6 }+\frac{35R_k DK_{4i}}{64K_{2i}^5 }-\frac{1001D^{6}K_{3i}^3 }{128K_{2i}^8 }+\frac{715R_k^7 K_{3i}^3 }{128K_{2i}^8 K_{1i}^2 }\\ & \left. -\frac{3003R_k^6 DK_{5i}}{32K_{2i}^{15/2} }+\frac{715R_k^3 K_{3i}^3 }{1008K_{2i}^4 K_{1i}^6}\right) \end{aligned} $$
(A46)

Here i = 1, 2, 3, 4, 7 or 8.

$$ \begin{aligned}F_{rep}^{16}= & \frac{-2c_2 LH_{nr} \sigma ^{6}}{45\pi (D+H_4)^{9}(D+H_0 )^{9}}\cdot \left (-9D^{8}H_0 -36D^{7}H_0^2 -84D^{6}H_0^3 -126D^{5}H_0^4 -126D^{4}H_0^5\right. \\ & -84D^{3}H_0^6 -36D^{2}H_0^7 -9DH_0^8 -H_0^9 +9D^{8}H_4 +36D^{7}H_4^2 +84D^{6}H_4^3 +\;126D^{5}H_4^4 \\ & \left. +126D^{4}H_4^5 +84D^{3}H_4^6 +36D^{2}H_4^7 +9DH_4^8 +H_4^9\right) \end{aligned} $$
(A47)
$$ \begin{aligned}F_{rep}^{15} = & \frac{-2c_2 LH_{nr} \sigma ^{6}}{45\pi (D+H_4 )^{9}(D+H_2 )^{9}}\cdot\left(-9D^{8}H_2 -36D^{7}H_2^2 -84D^{6}H_2^3 -126D^{5}H_2^4 -126D^{4}H_2^5\right. \\ & -84D^{3}H_2^6 -36D^{2}H_2^7 -9DH_2^8 -H_2^9 +9D^{8}H_4 +36D^{7}H_4^2 +84D^{6}H_4^3 +\;126D^{5}H_4^4 \\ & \left. +126D^{4}H_4^5 +84D^{3}H_4^6 +36D^{2}H_4^7 +9DH_4^8 +H_4^9\right) \end{aligned} $$
(A48)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabelkin, V., Mall, S. Adhesion force during microcontact interaction between cylindrical-segment-on-flat and flat bodies. Int J Mech Mater Des 4, 333–357 (2008). https://doi.org/10.1007/s10999-008-9078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-008-9078-y

Keywords

Navigation