Skip to main content
Log in

Characterization of strengthened rapidly quenched Zr-based alloys

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The nominal composition components of alloy Zr66.4Nb6.4Ni8.7Cu10.5Al8 (Alloy A) were fabricated and characterized. The strengthening of in-situ alloys depends on the role of both the glassy matrix and the second phases. The glass transition and the crystallization kinetics were studied using DSC and X-ray diffraction as a function of element distribution. The amorphous and semi-crystalline structures were identified with the existence of nano crystals in the alloy nominal compositions. The Elastic compression modulus were found to increase with transition to crystallite phase. Where as, the microhardness decreases dramatically with the change from crystalline to amorphous phase. The compression fracture surface shows classic veins behavior. In mode of continuous heating and adiabatic annealing the glass transition, T g , and the crystalline peak, T p , temperatures display a strong dependency on heating rate. The activation energy for glass transition and crystallization were determined as E g  = 226 KJ/mol based on Kissinger method, but during the isothermal process E g  = 121 KJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bain, Z., Chen, G.L., He, G., Hui, X.D.: Microstructure and ductile–brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Mater. Sci. Eng. A316, 135–144 (2001).

    Google Scholar 

  • Bansal, N., Doremus, R., Bruce, A., Moynihan, C.T.: Kinetics of crystallization of ZrF4-Ba2-LaF3 glass by differential scanning calorimetry. J. Am. Ceram. Soc. 66(4), 233–238 (1983).

    Article  Google Scholar 

  • Bengus, V., Tabachnikova, E., Miskuf, J., Csach, K., Ocelik, V., Johnson, W., Molokanov, V.: New features of the low temperature ductile shear failure observed in bulk amorphous alloys. J. Mater. Sci. 35, 4449–4457 (2000).

    Article  Google Scholar 

  • Chen, H., He, Y., Shiflet, G.J., Poon, S.J.: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. (London) Nature 367, 541–543 (1994).

    Article  Google Scholar 

  • Clavaguera-Mora, M.T., Baró, M.D., Suriñach, S., Clavaguera, N.: Crystallization behavior of some melt spun Nd–Fe–B alloys. J. Mater. Res. 5, 1201–1206 (1990).

    Article  Google Scholar 

  • Concustell, A., Alcalá, G., Mato, S., Woodcock, T.G., Gebert, A., Eckert, J., Baró, M.D.: Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu60Zr22Ti18 bulk metallic glass. Intermetallics 13(11), 1214–1219 (2005).

    Article  Google Scholar 

  • Csontos, A., Shiflet, G.: Formation and chemistry of nanocrystalline phases formed during deformation in aluminum-rich metallic glasses. Nanostruct. Mater. 9(1–8), 281–289 (1997).

    Article  Google Scholar 

  • Deschamps, A., Niewczas, M., Ble, F., Brechet, Y., Embury, J., Sinq, L., Livet, F., Simon, J.: Low-temperature dynamic precipitation in a supersaturated Al-Zn-Mg alloy and related strain hardening. Philos. Mag. 79(10), 2485–2504 (1999).

    Article  Google Scholar 

  • Gao, M., Hackenberg, R., Shiflet, G.: Deformation-induced nanocrystal precipitation in Al-base metallic glasses. Mater. Trans. JIM 42(8), 1741–1747 (2001).

    Article  Google Scholar 

  • Greer, A.L.: Metallic glasses. Curr. Opin. Solid State Mater. Sci. 2(4), 412–416 (1997).

    Article  Google Scholar 

  • Greer, A.L.: Partially or fully devitrified alloys for mechanical properties. Mater. Sci. Eng. A 304–306, 68–72 (2001).

    Google Scholar 

  • Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901–2904 (2000).

    Article  Google Scholar 

  • Henderson, D.W.: Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30, 301 (1979).

    Article  Google Scholar 

  • Hufnagel, T.C., El-Deiry, P., Vince, R.P.: Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scripta Mater. 43(12), 1071–1075 (2000).

    Article  Google Scholar 

  • Inoue A.: Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. Trans. Tech. Publications Ltd, Switzerland (1998).

    Google Scholar 

  • Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279–306 (2000).

    Article  Google Scholar 

  • Inoue, A., Zhang, T., Wei, M., Sakurait, T.: Mechanical properties of bulk amorphous Zr-Al-Cu-Ni-Ag alloys containing nanoscale quasicrystalline particles. Mater. Trans. JIM (Jpn Inst Met) 40(12), 1382–1389 (1999).

    Google Scholar 

  • Inue, A., Zhang, T., Masumoto, T.: Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 31(3), 177–183 (1990).

    Google Scholar 

  • Jiang, W., Atzmon, M.: Plastic flow of a nanocrystalline/amorphous Al90Fe5Gd5 composite formed by rolling. Fourth International Conference on Bulk Metallic Glasses. Intermetallics 14(8–9), 962–965 (2006).

    Google Scholar 

  • Kim, J.J., Choi, Y., Suresh, S., Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science. 295(5555), 654–657 (2002).

    Google Scholar 

  • Kim, T., Lee, J., Kim, H., Bae, J.: Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders. Mater. Sci. Eng. A 402, 228–233 (2005).

    Article  Google Scholar 

  • Kimura, H., Masumoto, T.: A model of the mechanics of serrated flow in an amorphous alloy. Acta Metall. 31(2), 231–240 (1983).

    Article  Google Scholar 

  • Klement, W., Willens, R.H., Duwez, P.: Noncrystalline structure in solidified gold–silicon alloys. (London) Nature 187, 869 (1960).

    Google Scholar 

  • Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10(5), 805–817 (1998).

    Article  Google Scholar 

  • Lin, X.H., Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).

    Article  Google Scholar 

  • Pecker, A., Johanson, W.L.: A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, (1993).

  • Saiter, J.M., Ledru, J., Hamou, A., Saffarini, G.: Crystallization of As x Se1−x from the glassy state (0.005 < < 0.03). Phys. B Condens. Matter 245(3), 256–262 (1998).

    Article  Google Scholar 

  • Sestak, J.: Applicability of DTA to the study of crystallization kinetics of glasses. Phys. Chem. Glass. 15(6), 137–140 (1974).

    Google Scholar 

  • Shaz, M.A., Mukhopadhyay, N.K., Mandal, R.K., Srivastava, O.N.: Synthesis and microhardness measurement of Ti–Zr–Ni nanoquasicrystalline phase. J. Alloys Comp. 342(1–2), 49–52 (2002).

    Article  Google Scholar 

  • Shelby, J.: Handbook of Gas Diffusion in Solids and Melts. ASM International, Member/Customer Service Center, Materials Park, USA (1996).

    Google Scholar 

  • Zhang, Z.F., Eckert, J., Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51(4), 1167–1179 (2003).

    Article  Google Scholar 

  • Zhang, T., Inoue, A., Masumoto, T.: Amorphous Zr–Al–TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans. JIM 32(11), 1005–1010 (1991).

    Google Scholar 

Download references

Acknowledgments

The authors thank M. Frey, H. Grahl, M. Gründlich, C. Mickel and Sven for sample preparation, H.-J. Klauß for assistance with the mechanical tests, and A. Güth for stimulating discussions. Also, the DAAD Foundation and the IFW Dresden for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat Awad El-Hadek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hadek, M.A., Kassem, M. Characterization of strengthened rapidly quenched Zr-based alloys. Int J Mech Mater Des 4, 279–289 (2008). https://doi.org/10.1007/s10999-008-9068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-008-9068-0

Keywords

Navigation