Skip to main content
Log in

Microstructure evolution of Al–Si alloys under shear loading

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, an attempt is made to predict the microstructure evolution in Al–Si alloy two-dimensional (2D) system under shear loading conditions. The importance of damage accumulation events in delamination wear is studied. The conducted molecular dynamics (MD) simulations are based on the Modified Embedded Atom Method (MEAM). As a result a cohesive zone type of model relating the shear stress and the shear displacement has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alpas, A., Embury, J.: The role of subsurface deformation and strain localization on the sliding wear behaviour of laminated composites. Wear 146, 285–300 (1991)

    Article  Google Scholar 

  • Alpas, A., Hu, H., Zhang, J.: Plastic deformation and damage accumulation below the worn surfaces. Wear 162, 188–195 (1993)

    Article  Google Scholar 

  • Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46(5), 2727–2742 (1992)

    Article  Google Scholar 

  • Baskes, M.I., Nelson, J.S., Wright, A.F.: Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B 40(9), 6085–6100 (1989)

    Article  Google Scholar 

  • Daw, M.S., Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285–1288 (1983)

    Article  Google Scholar 

  • Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)

    Article  Google Scholar 

  • Gall, K., Horstemeyer, M.F., Van Schilfgaarde, M., Baskes, M.I.: Atomistic simulations on the tensile debonding of an aluminum-silicon interface. J. Mech. Phys. Solids 48(10), 2183–2212 (2000)

    Article  MATH  Google Scholar 

  • Needleman, A.: An analysis of decohesion along an imperfect interface. Int. J. Frac. 42, 21–40 (1990)

    Article  Google Scholar 

  • Perrin, C., Rainforth, W.: Work hardening behavior at the worn surface of Al–Cu and Al–Si alloys. Wear 203–204, 171–179 (1997)

    Article  Google Scholar 

  • Tvergaard, V., Hutchinson, J.: Toughness of an interface along a thin ductile layer joining elastic solids. Phil. Mag. A 70, 641–656 (1994)

    Article  Google Scholar 

  • Warmuzek, M.: Metallographic techniques for aluminum and its alloys, metallography and microstructures. In: ASM Handbook, vol. 9, pp. 711–751. ASM International (2004)

  • Yamakov, V., Wolf, D., Phillpot, S.R., Mukharjee, A.K., Gleiter, H.: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1(1), 45–48 (2002)

    Article  Google Scholar 

  • Yamakov, V., Wolf, D., Phillpot, S., Mukharjee, A., Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43–47 (2004)

    Article  Google Scholar 

  • Zhang, J., Alpas, A.: Delamination wear in ductile matrials containing 2nd phase particles. Mater Sci Eng A 160, 25–35 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesselin Stoilov.

Appendix A

Appendix A

The forces acting on the atoms are readily determined

$$ f_{k} = - \frac{{\partial E}} {{\partial \ifmmode\expandafter\vec\else\expandafter\vec\fi{r}_{k} }} = - {\sum\limits_{j \ne k} {{\phi }\ifmmode{'}\else$'$\fi{\left( {r_{{kj}} } \right)}\frac{{\ifmmode\expandafter\vec\else\expandafter\vec\fi{r}_{{kj}} }} {{r_{{kj}} }}} } - {\sum\limits_{i = 1}^{N_{m} } {A_{i} F_{c} {\left( {\log \hat{\rho }_{i} + 1} \right)}\frac{{\partial \hat{\rho }_{i} }} {{\partial \ifmmode\expandafter\vec\else\expandafter\vec\fi{r}_{k} }}} } $$
(A1)

The second term in Eq. A1 can be reorganized

$$ \begin{aligned}{} & {\sum\limits_{i = 1}^{N_{m} } {{\left( {\log \hat{\rho }_{i} + 1} \right)}\frac{{\partial \hat{\rho }_{i} }} {{\partial \ifmmode\expandafter\vec\else\expandafter\vec\fi{r}_{k} }} = {\sum\limits_{i \ne j} {{\left( {\log \hat{\rho }_{i} + 1} \right)}\hat{\rho }^{\prime}_{i} {\left( {r_{{ij}} } \right)}{\left( {\delta _{{ik}} - \delta _{{jk}} } \right)}\ifmmode\expandafter\vec\else\expandafter\vec\fi{r}_{{ij}} } }} } \\ & \quad \quad\quad\quad \quad = {\sum\limits_{j \ne k} {\hat{\rho }^{\prime}_{i} {\left( {r_{{ik}} } \right)}{\left( {\log \rho _{k} + \log \rho _{j} + 2} \right)}\ifmmode\expandafter\vec\else\expandafter\vec\fi{r}_{{kj}} } } \\ \end{aligned} $$
(A2)

Using the definition of the relative electron density, \( \hat{\rho }_{i} \) (Eq. 3), \( \hat{\rho }^{\prime }_{i} \) is obtained

$$ \hat{\rho }^{\prime}_{i} = \frac{{2e^{{ - {\sum\limits_{s = 1}^3 {t^{{(s)}} {\left( {\frac{{\rho ^{{(s)}}_{i} }} {{\rho ^{{(s)}}_{0} }}} \right)}^{2} } }}} }} {{{\left( {1 + e^{{ - {\sum\limits_{s = 1}^3 {t^{{(s)}} {\left( {\frac{{\rho ^{{(s)}}_{i} }} {{\rho ^{{(s)}}_{0} }}} \right)}^{2} } }}} } \right)}^{2} }}{\left( { - {\sum\limits_{s = 1}^3 {t^{{(s)}} \frac{d} {{dr_{{ij}} }}{\left( {\frac{{\rho ^{{(s)}}_{i} }} {{\rho ^{{(s)}}_{0} }}} \right)}^{2} } }} \right)}. $$
(A3)

The necessary derivatives of the partial electron densities are given as

$$ \frac{d} {{dr_{{ij}} }}{\left( {\frac{{\rho ^{{(s)}}_{i} }} {{\rho ^{{(s)}}_{0} }}} \right)}^{2} = \frac{{{\left( {\rho ^{{(s)}}_{0} } \right)}^{2} \frac{{d{\left( {\rho ^{{(s)}}_{i} } \right)}^{2} }} {{dr_{{ij}} }} - {\left( {\rho ^{{(s)}}_{i} } \right)}^{2} \frac{{d{\left( {\rho ^{{(s)}}_{0} } \right)}^{2} }} {{dr_{{ij}} }}}} {{{\left( {\rho ^{{(s)}}_{0} } \right)}^{4} }}, $$
(A4)
$$ \begin{aligned}{} & \frac{{d{\left( {\rho ^{{(s)}}_{i} } \right)}^{2} }} {{dr_{{ij}} }} = 2{\sum\limits_{j,k \ne i} {{\left( {\rho ^{{a(s)}}_{i} (r_{{ij}} )} \right)}^{\prime} \rho ^{{a(s)}}_{j} (r_{{ik}} )L^{{(s)}} {\left( {\cos \theta _{{jik}} } \right)}} } \\ & + {\sum\limits_{j,k \ne i} {\rho ^{{a(s)}}_{i} (r_{{ij}} )\rho ^{{a(s)}}_{j} (r_{{ik}} ){\left( {L^{{(s)}} {\left( {\cos \theta _{{jik}} } \right)}} \right)}^{\prime} } } \\ \end{aligned} $$
(A5)

Finally the differentiation of the electron densities yields

$$ {\left( {\rho ^{{a(s)}}_{i} (r_{{ij}} )} \right)}^{\prime} = S_{{ij}} f_{c} {\left( {r_{{ij}} } \right)}f^{0}_{i} e^{{ - \beta ^{s}_{i} {\left( {\frac{{r_{{ij}} }} {{r_{0} }} - 1} \right)}}} {\left( { - \frac{{\beta ^{s}_{i} }} {{r_{0} }}} \right)}. $$
(A6)

The first term in Eq. A1 represents the forces due to the pair interactions. The magnitude of \( \phi^{\prime} (r_{kj})\) can be obtain from Eq. A3

$$ {\phi }\ifmmode{'}\else$'$\fi{\left( {r_{{kj}} } \right)} = \frac{2} {Z}{\left( {\frac{{dE^{u} (r_{{ij}} )}} {{dr_{{ij}} }} - \frac{{dF_{i} {\left( {\ifmmode\expandafter\bar\else\expandafter\=\fi{\rho }_{i} {\left( {r_{{ij}} } \right)}} \right)}}} {{dr_{{ij}} }}} \right)}, $$
(A7)

where

$$ \frac{{dE^{u} (r_{{ij}} )}} {{dr_{{ij}} }} = E_{c} \frac{{\alpha ^{2} }} {{r_{0} }}{\left( {\frac{{r_{{ij}} }} {{r_{0} }} - 1} \right)}e^{{ - \alpha {\left( {\frac{{r_{{ij}} }} {{r_{0} }} - 1} \right)}}} . $$
(A8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inci, L., Tavoosfard, S. & Stoilov, V. Microstructure evolution of Al–Si alloys under shear loading. Int J Mech Mater Des 4, 197–203 (2008). https://doi.org/10.1007/s10999-007-9035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-007-9035-1

Keywords

Navigation