Skip to main content
Log in

On the smallest area \((n-1)\)-gon containing a convex n-gon

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Approximation of convex disks by inscribed and circumscribed polygons is a classical geometric problem whose study is motivated by various applications in robotics and computer aided design. We consider the following optimization problem: given integers \(3\le n\le m-1\), find the value or an estimate of

$$\begin{aligned} r(n,m)=\max _{P\in {\mathcal {P}}_m}\,\, \min _{Q\in {\mathcal {P}}_n,\,Q \supseteq P} \frac{|Q|}{|P|} \end{aligned}$$

where P varies in the set \({\mathcal {P}}_m\) of all convex m-gons, and, for a fixed m-gon P, the minimum is taken over all n-gons Q containing P; here \(|\cdot |\) denotes area. It is easy to prove that \(r(3,4)=2\), and from a result of Gronchi and Longinetti it follows that \(r(n-1, n)= 1+\frac{1}{n}\tan \left( \pi /{n}\right) \tan \left( {2\pi }/{n}\right) \) for all \(n\ge 6\). In this paper we show that every unit area convex pentagon is contained in a convex quadrilateral of area no greater than \(3/\sqrt{5}\) thus determining the value of r(4, 5). In all cases, the equality is reached only for affine regular polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Aggarwal, J.S. Chang, C.K. Yap, Minimum area circumscribing polygons. Vis. Comput. 1, 112–117 (1985)

    Article  MATH  Google Scholar 

  2. W. Blaschke, Kreis und Kugel (1915), 2nd edn. (de Gruyter, Berlin, 1956)

    Book  MATH  Google Scholar 

  3. G.D. Chakerian, Minimum area of circumscribed polygons. Elem. Math. 28, 108–111 (1973)

    MathSciNet  MATH  Google Scholar 

  4. G.D. Chakerian, L.H. Lange, Geometric extremum problems. Math. Mag. 44, 57–69 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. B.M. Chazelle, Approximation and decomposition of shapes, in Advances in Robotics, vol. 1, ed. by C.K. Yap, J. Schwartz (Lawrence O’ Erlbaum Inc., London, 1985)

    Google Scholar 

  6. A. DePano, On \(k\)-envelopes and shared edges, Technical Report. Department of Electric Engineering and Computer Science. The Johns Hopkins University (1984)

  7. D. Dori, M. Ben-Bessat, Circumscribing a convex polygon with polygon of fewer sides with minimal area addition. Comput. Vis. Graph Image Proc. 24, 131–159 (1985)

    Article  MATH  Google Scholar 

  8. H.G. Eggleston, On triangles circumscribing plane convex sets. J. Lond. Math. Soc. 28, 36–46 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Fejes Tóth, Eine Bemerkung zur Approximation durch \(n\)-Eckringe. Compos. Math. 7, 474–476 (1940)

    MathSciNet  MATH  Google Scholar 

  10. P. Gronchi, M. Longinetti, Affinely regular polygons as extremals of area functionals. Discrete Comput. Geom. 39(1–3), 273–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Gross, Über affine Geometrie XIII: Eine Minimumeigenschaft der Ellipse und des Ellipsoids. Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Klasse 70, 38–54 (1918)

    MATH  Google Scholar 

  12. T.C. Hales, On the Reinhardt conjecture. Vietnam J. Math. 39, 287–307 (2011)

    MathSciNet  MATH  Google Scholar 

  13. D. Ismailescu, Circumscribed polygons of small area. Discrete Comput. Geom. 41(4), 583–589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Kuperberg, On minimum area quadrilaterals and triangles circumscribed about convex plane regions. Elem. Math. 38(3), 57–61 (1983)

    MathSciNet  MATH  Google Scholar 

  15. A.M. Macbeath, A compactness theorem for affine equivalence classes of convex regions. Can. J. Math. 3, 54–61 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Pełczyński, S.J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in \({\mathbb{R} }^n\). Math. Proc. Camb. Philos. Soc. 109(1), 125–148 (1991)

    Article  MATH  Google Scholar 

  17. C.M. Petty, On the geometry of the Minkowski plane. Riv. Mat. Univ. Parma 6, 269–292 (1955)

    MathSciNet  MATH  Google Scholar 

  18. K. Reinhardt, Über die dichteste gitterförmige Lagerung kongruenter Bereiche in der Ebene und eine besondere Art konvexer Kurven. Abh. Math. Sem. Hansischer Univ. 10, 216–230 (1934)

    Article  MATH  Google Scholar 

  19. V.A. Zalgaller, A remark on a convex \(k\)-gon of minimal area circumscribed about a convex \(n\)-gon. J. Math. Sci. (N. Y.) 104, 1272–1275 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for their useful suggestions and for bringing to our attention the paper of Gronchi and Longinetti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ismailescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, D.E., Ismailescu, D., Kwak, A. et al. On the smallest area \((n-1)\)-gon containing a convex n-gon. Period Math Hung 87, 394–403 (2023). https://doi.org/10.1007/s10998-023-00527-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-023-00527-4

Keywords

Mathematics Subject Classification

Navigation