J. Alaya, P. Maroni, Symmetric Laguerre–Hahn forms of class \(s=1\). Integ. Trans. Spc. Funct. 2, 301–320 (1996)
MathSciNet
Article
Google Scholar
J. Alaya, P. Maroni, Some semi-classical and Laguerre–Hahn forms defined by pseudo-functions. Methods Appl. Anal. 3(1), 12–30 (1996)
MathSciNet
Article
Google Scholar
K. Ben Gharbi, L. Khériji, M. Ihsen Tounsi, Characterization of the symmetric \(D\)-Laguerre–Hahn orthogonal polynomial sequences of even class via the quadratic decomposition. J. Differ. Equ. Appl. 24(7), 1164–1184 (2018)
MathSciNet
Article
Google Scholar
I. Ben Salah, Third degree classical forms. Appl. Numer. Math. 44(4), 433–447 (2003). https://doi.org/10.1016/S0168-9274(02)00189-7
MathSciNet
Article
MATH
Google Scholar
M.I. Bueno, F. Marcellán, Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)
MathSciNet
Article
Google Scholar
H. Bouakkaz, P. Maroni, Description des polynômes de Laguerre–Hahn de classe zéro. In Orthogonal polynomials and their applications (Erice, 1990), Brezinski C et al, editors, 95-130, IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991
W. Chammam, Several formulas and identities related to Catalan-Qi and \(q\)-Catalan-Qi numbers. Indian J. Pure Appl. Math. 50(4), 1039–1048 (2019)
MathSciNet
Article
Google Scholar
T.S. Chihara, An introduction to orthogonal polynomials (Gordon and Breach, New York, 1978)
MATH
Google Scholar
E.B. Christoffel, Über die Gaussische Quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math. 55, 61–82 (1858)
MathSciNet
Google Scholar
H. Dueñas, F. Marcellán, E. Prianes, Perturbations of Laguerre-Hahn functional modification by the derivative of a Dirac delta. Integr. Trans. Spec. Funct. 20, 59–77 (2009)
MathSciNet
Article
Google Scholar
H. Dueñas, L.E. Garza, Perturbations of Laguerre-Hahn class linear functionals by Dirac delta derivatives. Bol. Mat. 19(1), 65–90 (2012)
MathSciNet
Google Scholar
M. Foupouagnigni, A. Ronveaux, Difference equation for the co-recursive rth associated orthogonal polynomials of the \(D_q\)-Laguerre-Hahn class. J. Comput. Appl. Math. 153, 213–223 (2003)
MathSciNet
Article
Google Scholar
K.B. Gharbi, L. Khériji, On the Christoffel product of a D-Laguerre–Hahn form by a polynomial of one degree. Afrika Matematika 32(5–6), 1147–1157 (2021). https://doi.org/10.1007/s13370-021-00888-4
MathSciNet
Article
MATH
Google Scholar
A. Ghressi, The symmetrical \(H_{q}\)-semiclassical orthogonal polynomials of class one. Symmetry Integr. Geom. Methods Appl. (2009). https://doi.org/10.3842/SIGMA.2009.076
MathSciNet
Article
MATH
Google Scholar
A. Ghressi, An introduction to the \(q\)-Laguerre-Hahn orthogonal \(q\)-polynomials. Symmetry Integr. Geom. Methods Appl. (2011). https://doi.org/10.3842/SIGMA.2011.092
MathSciNet
Article
MATH
Google Scholar
L. Khériji, P. Maroni, The \(H_{q}\)- classical orthogonal polynomials. Acta Appl. Math. 71(1), 49–115 (2002)
MathSciNet
Article
Google Scholar
L. Khériji, An introduction to the \(H_{q}\)-semiclassical orthogonal polynomials. Methods Appl. Anal. 10(3), 387–411 (2003)
MathSciNet
Article
Google Scholar
L. Khériji, P. Maroni, On the natural q-analogues of the classical orthogonal polynomials. Eurasian Math. J. 4(2), 82–103 (2013)
MathSciNet
MATH
Google Scholar
A. Magnus, Riccati acceleration of Jacobi continued fractions and Laguerre–Hahn orthogonal polynomials. In: padé approximation and its applications, Bad Honnef 1983 (Bad Honnef, 1983), 213-230, Lecture Notes in Math., 1071, Springer, Berlin, 1984
F. Marcellán, E. Prianes, Perturbations of Laguerre-Hahn linear functionals. J. Comput. Appl. Math. 105, 109–128 (1999)
MathSciNet
Article
Google Scholar
P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Orthogonal polynomials and their applications (Erice, 1990), Brezinski C, et al, editors, 95-130, IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991
P. Maroni, Sur la suite de polynômes orthogonaux associée à la forme \(u = \delta _c +\lambda (x-c)^{-1}L \). Period. Math. Hungar. 21(3), 223–248 (1990)
MathSciNet
Article
Google Scholar
M. Sghaier, M. Zaatra, A. Khlifi, Laguerre-Freud equations associated with the \(D\)-Laguerre-Hahn forms of class one. Adv. Pure Appl. Math. 10(4), 395–411 (2019)
MathSciNet
Article
Google Scholar
M. Sghaier, M. Zaatra, A large family of symmetric Laguerre–Hahn polynomials of class two. Integr. Trans. Spec. Funct. 22(3), 217–231 (2011)
MathSciNet
Article
Google Scholar
G. Yoon, Darboux transforms and orthogonal polynomials. Bull. Korean Math. Soc. 39, 359–376 (2002)
MathSciNet
Article
Google Scholar
M. Zaatra, A characterization of Laguerre–Hahn orthogonal polynomials of class one. Albanian J. Math. 10(1), 21–37 (2016)
MathSciNet
MATH
Google Scholar
A. Zhedanov, Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67–86 (1997)
MathSciNet
Article
Google Scholar