J. Araujo, L. Dubarbie, Noncompactness and noncompleteness in isometries of Lipschitz spaces. J. Math. Anal. Appl. 377, 15–29 (2011)
MathSciNet
Article
Google Scholar
F. Botelho, R.J. Fleming, J. Jamison, Extreme points and isometries on vector-valued Lipschitz spaces. J. Math. Anal. Appl. 381, 821–832 (2011)
MathSciNet
Article
Google Scholar
F. Botelho, J. Jamison, Surjective isometries on spaces of differentiable vector-valued functions. Stud. Math. 192, 39–50 (2009)
MathSciNet
Article
Google Scholar
B. Cengiz, On extremely regular function spaces. Pac. J. Math. 49, 335–338 (1973)
MathSciNet
Article
Google Scholar
K. de Leeuw, Banach spaces of Lipschitz functions. Stud. Math. 21, 55–66 (1962)
MathSciNet
Article
Google Scholar
R. Fleming, J. Jamison, Isometries in Banach Spaces: Function Spaces, vol. 1 (CRC Press, Boca Raton, 2003)
MATH
Google Scholar
R. Fleming, J. Jamison, Isometries in Banach Spaces: Vector-Valued Function Spaces and Operator Spaces, vol. 2 (CRC Press, Boca Raton, 2007)
Book
Google Scholar
J. Font, Linear isometries between certain subspaces of continuous vector-valued functions. Ill. J. Math. 42, 389–397 (1998)
MathSciNet
MATH
Google Scholar
O. Hatori, Hermitian operators and isometries on Banach algebras of continuous maps with values in a unital commutative \(C^*\)-algebras. J. Funct. Space 4, 1–14 (2018)
MathSciNet
MATH
Google Scholar
M. Hosseini, Isometries on spaces of absolutely continuous vector-valued functions. J. Math. Anal. Appl. 463(1), 386–397 (2018)
MathSciNet
Article
Google Scholar
A. Jamshidi, F. Sady, A note on nonlinear isometries between vector-valued function spaces. Linear Multilinear Algebra 68(2), 293–303 (2020)
MathSciNet
Article
Google Scholar
M. Jerison, The space of bounded maps into a Banach space. Ann. Math. 52, 309–327 (1950)
MathSciNet
Article
Google Scholar
A. Jiménez-Vargas, M. Villegas-Vallecillos, Into linear isometries between spaces of Lipschitz functions. Houst. J. Math. 34, 1165–1184 (2008)
MathSciNet
MATH
Google Scholar
A. Jiménez-Vargas, M. Villegas-Vallecillos, Linear isometries between spaces of vector-valued Lipschitz functions. Proc. Am. Math. Soc. 137, 1381–1388 (2009)
MathSciNet
Article
Google Scholar
K. Kawamura, H. Koshimizu, T. Miura, Norms on \(C^1([0,1])\) and their isometries. Acta Sci. Math. (Szeged) 84, 239–261 (2018)
MathSciNet
Article
Google Scholar
K.S. Lau, A representation theorem for isometries of \(C(X, E)\). Pac. J. Math. 60, 229–233 (1975)
MathSciNet
Article
Google Scholar
M. Mojahedi, F. Sady, Isometries on certain non-complete vector-valued function spaces. Acta. Sci. Math. (Szeged) 85, 613–627 (2019)
MathSciNet
Article
Google Scholar
A. Ranjbar-Motlagh, A note on isometries of Lipschitz spaces. J. Math. Anal. Appl. 411, 555–558 (2014)
MathSciNet
Article
Google Scholar
N.V. Rao, A.K. Roy, Linear isometries of some function spaces. Pac. J. Math. 38, 177–192 (1971)
MathSciNet
Article
Google Scholar
A.K. Roy, Extreme points and linear isometries of the Banach space of Lipschitz functions. Can. J. Math. 20, 1150–1164 (1968)
MathSciNet
Article
Google Scholar