Skip to main content

The Schwarzian derivative on Finsler manifolds of constant curvature


Lagrange introduced the notion of Schwarzian derivative and Thurston discovered its mysterious properties playing a role similar to that of curvature on Riemannian manifolds. Here we continue our studies on the development of the Schwarzian derivative on Finsler manifolds. First, we obtain an integrability condition for the Möbius equations. Then we obtain a rigidity result as follows; Let (MF) be a connected complete Finsler manifold of positive constant Ricci curvature. If it admits non-trivial Möbius mapping, then M is homeomorphic to the n-sphere. Finally, we reconfirm Thurston’s hypothesis for complete Finsler manifolds and show that the Schwarzian derivative of a projective parameter plays the same role as the Ricci curvature on theses manifolds and could characterize a Bonnet–Mayer-type theorem.

This is a preview of subscription content, access via your institution.


  1. H. Akbar-Zadeh, Sur les espaces de Finsler á courbures sectionelles constantes. Acad. R. Belg. Bull. Cl. Sci. 5(74), 281–322 (1988)

    MathSciNet  MATH  Google Scholar 

  2. P.L. Antonelli, R.S. Ingarden, M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, FTPH 58 (Kluwer, Dordrecht, 1993)

    Book  Google Scholar 

  3. A. Asanjarani, B. Bidabad, A classification of complete Finsler manifolds through a second order differential equation. Differ. Geom. Appl. 26, 434–444 (2008)

    MathSciNet  Article  Google Scholar 

  4. D. Bao, S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry (Springer, Berlin, 2000)

    Book  Google Scholar 

  5. B. Bidabad, F. Sedighi, The Schwarzian derivative and conformal transformation on Finsler manifolds. J. Korean Math. Soc. 57(4), 873–892 (2020)

    MathSciNet  MATH  Google Scholar 

  6. B. Bidabad, M. Sepasi, On a projectively invariant pseudo-distance in Finsler Geometry. Int. J. Geom. Methods Mod. Phys. 12(4), 1550043 (2015)

    MathSciNet  Article  Google Scholar 

  7. B. Bidabad, M. Sepasi, On complete Finsler spaces of constant negative Ricci curvature. Int. J. Geom. Methods Mod. Phys. 17(3), 2050041 (2020)

    MathSciNet  Article  Google Scholar 

  8. B. Bidabad, A. Shahi, On Sobolev spaces and density theorems on Finsler manifolds. AUT J. Math. Com. 1(1), 37–45 (2020)

    Google Scholar 

  9. K. Carne, The Schwarzian derivative for conformal maps. J. Reine Angew. Math. 408, 10–33 (1990)

    MathSciNet  MATH  Google Scholar 

  10. X. Cheng, Z. Shen, Finsler Geometry, An Approach via Randers Spaces (Science Press Beijing; Springer, Heidelberg, 2012)

    Book  Google Scholar 

  11. P. Joharinad, B. Bidabad, Conformal vector fields on complete Finsler spaces of constant Ricci curvature. Differ. Geom. Appl. 33, 75–84 (2014)

    MathSciNet  Article  Google Scholar 

  12. B. Osgood, D. Stowe, The Schwarzian derivative and conformal mapping of Riemannian manifolds. Duke Math. J. 67, 57–99 (1992)

    MathSciNet  Article  Google Scholar 

  13. H. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959)

    Book  Google Scholar 

  14. M. Sepasi, B. Bidabad, On a projectively invariant distance on Finsler spaces. C. R. Acad. Sci. Paris Ser. I 352, 999–1003 (2014)

    Article  Google Scholar 

  15. Z. Shen, On projectively related Einstein metrics in Riemann–Finsler geometry. Math. Ann. 320, 625–647 (2001)

    MathSciNet  Article  Google Scholar 

  16. Z. Shen, G. Yang, On concircular transformations in Finsler geometry. Results Math. 74, 4 (2019)

    MathSciNet  Article  Google Scholar 

  17. W.P. Thurston, Zippers and Univalent Functions, The Bieberbach Conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr., vol. 21, (American Mathematical Society, Providence, 1986), pp. 185–197.

Download references


The first author would like to thank the “Institut de Mathématiques de Toulouse” (ITM) at the Paul Sabatier University of Toulouse, where this article is partially written.

Author information

Authors and Affiliations


Corresponding author

Correspondence to B. Bidabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bidabad, B., Sedighi, F. The Schwarzian derivative on Finsler manifolds of constant curvature. Period Math Hung 84, 346–357 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Finsler
  • Schwarzian
  • Möbius
  • Constant curvature
  • Conformal
  • Completely integrable

Mathematics Subject Classification

  • 53C60
  • 58B20