Skip to main content

Remark on the spectral synthesis on infinite joins of finite hypergroups

Abstract

Spectral theory has become a central area of studies on commutative hypergroups. Spectral analysis and synthesis have been proved for different classes of hypergroups. In their paper (Fechner and Székelyhidi in Ann Univ Sci Budapest Sect Comput), the authors introduced and studied an infinite join of general finite hypergroups. Here we prove that under some general conditions spectral analysis and synthesis hold on that hypergroup.

This is a preview of subscription content, access via your institution.

References

  1. Á. Bereczky, L. Székelyhidi, Spectral synthesis on torsion groups. J. Math. Anal. Appl. 304(2), 607–613 (2005)

    MathSciNet  Article  Google Scholar 

  2. W.R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics, vol. 20 (Walter de Gruyter & Co., Berlin, 1995)

    Book  Google Scholar 

  3. Y. Chapovsky, Existence of an invariant measure on a hypergroup, arXiv:1212.6571, 2012

  4. Ż Fechner, L. Székelyhidi, Functional equations on an infinite hypergroup join. Ann. Univ. Sci. Budapest. Sect. Comput. 49, 179–185 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Ż. Fechner and L. Székelyhidi, Remarks on infinite hypergroup joins. Ann. Univ. Sci. Budapest. Sect. Comput., to appear

  6. R.I. Jewett, Spaces with an abstract convolution of measures. Adv. Math. 18(1), 1–101 (1975)

    MathSciNet  Article  Google Scholar 

  7. L. Székelyhidi, Functional Equations on Hypergroups (World Scientific Publishing Co Pte. Ltd., Hackensack, NJ, 2013)

    MATH  Google Scholar 

  8. L. Székelyhidi, Exponential polynomials on commutative hyergroups. Arch. Math. (Basel) 101(4), 341–347 (2013)

    MathSciNet  Article  Google Scholar 

  9. L. Székelyhidi, Characterization of exponential polynomials on commutative hypergroups. Ann. Funct. Anal. 5(2), 53–60 (2014)

    MathSciNet  Article  Google Scholar 

  10. L. Székelyhidi, Spherical spectral synthesis on hypergroups. Acta Math. Hung. (2020). https://doi.org/10.1007/s10474-020-01068-9

    MathSciNet  Article  MATH  Google Scholar 

  11. K. Vati, Gelfand pairs over hypergroup joins. Acta Math. Hung. 160(1), 101–108 (2020)

    MathSciNet  Article  Google Scholar 

  12. H.Zeuner, A limit theorem on a family of infinite joins of hypergroups, in Harmonic analysis and hypergroups (Delhi, 1995), Trends Math., (Birkhäuser Boston, Boston, MA, 1998), p. 243–249.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedumetse Vati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vati, K. Remark on the spectral synthesis on infinite joins of finite hypergroups. Period Math Hung 84, 299–302 (2022). https://doi.org/10.1007/s10998-021-00406-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-021-00406-w

Keywords

  • Hypergroup join
  • Spectral analysis
  • Spectral synthesis

Mathematics Subject Classification

  • 20N20
  • 43A62
  • 39B99