Skip to main content

Characterizing linear mappings through zero products or zero Jordan products


Let \({\mathcal {A}}\) be a \(*\)-algebra and \({{\mathcal {M}}}\) be a \(*\)-\({\mathcal {A}}\)-bimodule. We study the local properties of \(*\)-derivations and \(*\)-Jordan derivations from \({\mathcal {A}}\) into \({{\mathcal {M}}}\) under the following orthogonality conditions on elements in \({\mathcal {A}}\): \(ab^*=0\), \(ab^*+b^*a=0\) and \(ab^*=b^*a=0\). We characterize the mappings on zero product determined algebras and zero Jordan product determined algebras. Moreover, we give some applications on \(C^*\)-algebras, group algebras, matrix algebras, algebras of locally measurable operators and von Neumann algebras.

This is a preview of subscription content, access via your institution.


  1. J. Alaminos, M. Brešar, J. Extremera, A. Villena, Maps preserving zero products. Studia Math. 193, 131–159 (2009)

    MathSciNet  Article  Google Scholar 

  2. J. Alaminos, M. Brešar, J. Extremera, A. Villena, Characterizing Jordan maps on \(C^{*}\)-algebras through zero products. Proc. Edinburgh Math. Soc. 53, 543–555 (2010)

    MathSciNet  Article  Google Scholar 

  3. J. Alaminos, M. Brešar, J. Extremera, A. Villena, Orthogonality preserving linear maps on group algebras. Math. Proc. Camb. Phil. Soc. 158, 493–504 (2015)

    MathSciNet  Article  Google Scholar 

  4. G. An, J. Li, Characterizations of linear mappings through zero products or zero Jordan products. Electron. J. Linear Algebra 31, 408–424 (2016)

    MathSciNet  Article  Google Scholar 

  5. G. An, J. Li, J. He, Zero Jordan product determined algebras. Linear Algebra Appl. 475, 90–93 (2015)

    MathSciNet  Article  Google Scholar 

  6. M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc. Roy. Soc. Edinburgh Sect. A 137, 9–21 (2007)

    MathSciNet  Article  Google Scholar 

  7. M. Brešar, Multiplication algebra and maps determined by zero products. Linear Multilinear Algebra 60, 763–768 (2012)

    MathSciNet  Article  Google Scholar 

  8. M. Brešar, J. Vukman, On left derivations and related mappings. Proc. Am. Math. Soc. 110, 7–16 (1990)

    MathSciNet  Article  Google Scholar 

  9. J. Cuntz, On the continuity of Semi-Norms on operator algebras. Math. Ann. 220, 171–183 (1976)

    MathSciNet  Article  Google Scholar 

  10. H. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monog. Ser. 24, Oxford Univ. Press, New York, 2000

  11. H. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebra. Studia Math. 128, 19–54 (1998)

    MathSciNet  MATH  Google Scholar 

  12. A. Essaleh, A. Peralta, Linear maps on \(C^*\)-algebras which are derivations or triple derivations at a point. Linear Algebra Appl. 538, 1–21 (2018)

    MathSciNet  Article  Google Scholar 

  13. B. Fadaee and H. Ghahramani. Linear maps behaving like derivations or anti-derivations at orthogonal elements on \(C^*\)-algebras, arXiv: 1907.03594v1

  14. P. Fillmore, D. Topping, Operator algebras generated by projections. Duke Math. J. 34, 333–336 (1967)

    MathSciNet  Article  Google Scholar 

  15. H. Ghahramani, On derivations and Jordan derivations through zero products. Oper. Matrices 8, 759–771 (2014)

    MathSciNet  Article  Google Scholar 

  16. H. Ghahramani, Characterizing Jordan derivations of matrix rings through zero products. Math. Slovaca 65, 1277–1290 (2015)

    MathSciNet  Article  Google Scholar 

  17. H. Ghahramani. Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal element, Results Math., 73 (2018), no. 4, Art. 133, 14pp

  18. H. Ghahramani, Z. Pan, Linear maps on \(*\)-algebras acting on orthogonal element like derivations or anti-derivations. Filomat 13, 4543–4554 (2018)

    MathSciNet  Article  Google Scholar 

  19. J. He, J. Li, W. Qian, Characterizations of centrelizers and derivations on some algebras. J. Korean Math. Soc. 54, 685–696 (2017)

    MathSciNet  Article  Google Scholar 

  20. S. Hejazian, A. Niknam, Modules, annihilators and module derivations of \(JB^{*}\)-algebras. Indian J. Pure Appl. Math. 27, 129–140 (1996)

    MathSciNet  MATH  Google Scholar 

  21. B. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations Math. Proc. Camb. Philos. Soc. 120, 455–473 (1996)

    Article  Google Scholar 

  22. R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras, I, Pure Appl. Math. 100, Academic Press, New York, 1983

  23. R. Kantrowitz, M. Neumann, Disjointness preserving and local operators on algebras of differentiable functions. Glasgow Math. J. 43, 295–309 (2001)

    MathSciNet  Article  Google Scholar 

  24. A. Kishimoto, Dissipations and Derivations. Commun. Math. Phys. 47, 25–32 (1976)

    MathSciNet  Article  Google Scholar 

  25. T. Lam, A First Course in Noncommutative Rings (Springer-Verlag, New York, 1991)

    Book  Google Scholar 

  26. B. Li, Introduction to Operator Algebras (World Scientific, Singapore, 1992)

    MATH  Google Scholar 

  27. V. Losert, The derivation problem for group algebras. Ann. Math. 168, 221–246 (2008)

    MathSciNet  Article  Google Scholar 

  28. M. Muratov, V. Chilin, Algebras of measurable and locally measurable operators, Kyiv, Pratse In-ty matematiki NAN ukraini., 69 (2007), 390 pp, (Russian)

  29. S. Sakai, C*-Algebras and W*-Algebras (Springer-Verlag, Berlin, 1971)

    MATH  Google Scholar 

Download references


The authors thank the referee for his or her suggestions. This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11801342, 11801005, 11871021); Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-693); Scientific research plan projects of Shannxi Education Department (Grant No.  9JK0130).

Author information

Authors and Affiliations


Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, G., He, J. & Li, J. Characterizing linear mappings through zero products or zero Jordan products. Period Math Hung 84, 270–286 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • \(*\)-(Jordan) derivation
  • \(*\)-(Jordan) left derivation
  • Zero (Jordan) product determined algebra
  • \(C^*\)-algebra
  • von Neumann algebra

Mathematics Subject Classification

  • 15A86
  • 47A07
  • 47B47
  • 47B49