Skip to main content

Sums of certain fractional parts


In this note, an upper bound for the sum of fractional parts of certain smooth functions is given. Such sums arise naturally in numerous problems of analytic number theory. The main feature is here an improvement of the main term due to the use of Weyl’s bound for exponential sums and a device used by Popov.

This is a preview of subscription content, access via your institution.


  1. O. Bordellès, Arithmetic Tales (Springer, Universitext, 2012)

  2. O. Bordellès, F. Luca, I. Shparlinski, On the error term of a lattice counting problem. J. Number Theory 182, 19–36 (2018)

    MathSciNet  Article  Google Scholar 

  3. O. Bordellès, On the error term of a lattice counting problem, II. Int. J. Number Theory 16, 1153–1160 (2020)

  4. M. Branton, P. Sargos, Points entiers au voisinage d’une courbe à très faible courbure. Bull. Sci. Math. 118, 15–28 (1994)

  5. O.M. Fomenko, On the distribution of fractional parts of polynomials. J. Math. Sci. 184, 770–775 (2012)

    MathSciNet  Article  Google Scholar 

  6. S.W. Graham, G. Kolesnik, Van Der Corput’s Method of Exponential Sums (Cambridge University Press, 1991)

  7. D.R. Heath-Brown, A new k-th derivative estimate for exponential sums via Vinogradov’s mean value. Tr. Mat. Inst. Steklova 296, 95–110 (2017)

  8. M.N. Huxley, P. Sargos, Points entiers au voisinage d’une courbe plane de classe \(C^n\), II. Functiones et Approximatio 35, 91–115 (2006)

  9. H.L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, AMS, CBMS 84 (1994)

  10. V.N. Popov, On the number of integral points under a parabola. Mat. Zametki 18, 699–704 (1975)

    MathSciNet  Google Scholar 

  11. O. Robert, On van der Corput’s k-th derivative test for exponential sums. Indag. Math. 27, 559–589 (2016)

  12. T.D. Wooley, The cubic case of the main conjecture in Vinogradov’s mean value theorem. Adv. Math. 294, 532–561 (2016)

Download references


The author gratefully acknowledges the anonymous referee for some corrections and remarks that have significantly improved the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Olivier Bordellès.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bordellès, O. Sums of certain fractional parts. Period Math Hung 84, 203–210 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Weyl’s and van der Corput’s exponential sums
  • Fractional part

Mathematics Subject Classification

  • Primary 11L07
  • Secondary 11L15
  • 11J54