Skip to main content

Gorenstein projective objects in comma categories


Let \(\mathcal {A}\) and \(\mathcal {B}\) be abelian categories and \({\mathbf {F}} :\mathcal {A}\rightarrow \mathcal {B}\) an additive and right exact functor which is perfect, and let \(({\mathbf {F}},\mathcal {B})\) be the left comma category. We give an equivalent characterization of Gorenstein projective objects in \(({\mathbf {F}},\mathcal {B})\) in terms of Gorenstein projective objects in \(\mathcal {B}\) and \(\mathcal {A}\). We prove that there exists a left recollement of the stable category of the subcategory of \(({\mathbf {F}},\mathcal {B})\) consisting of Gorenstein projective objects modulo projectives relative to the same kind of stable categories in \(\mathcal {B}\) and \(\mathcal {A}\). Moreover, this left recollement can be filled into a recollement when \(\mathcal {B}\) is Gorenstein and \({\mathbf {F}}\) preserves projectives.

This is a preview of subscription content, access via your institution.


  1. J. Asadollahi, S. Salarian, Gorenstein objects in triangulated categories. J. Algebra 281, 264–286 (2004)

    MathSciNet  Article  Google Scholar 

  2. M. Auslander, M. Bridger, Stable Module Theory, vol. 94 (Amer. Math. Soc., Providence, 1969)

    MATH  Google Scholar 

  3. A.A. Bĭlinson, J. Bernstein, P. Deligne, Faisceaux Pervers, Astérisque, vol. 100 (Soc. Math. France, Paris, 1982)

  4. A. Beligiannis, I. Reiten, Homological and Homotopical Aspects of Torsion Theories, vol. 188 (Amer. Math. Soc., Providence, 2007)

  5. E.E. Enochs, M. Cortés-Izurdiaga, B. Torrecillas, Gorenstein conditions over triangular matrix rings. J. Pure Appl. Algebra 218, 1544–1554 (2014)

    MathSciNet  Article  Google Scholar 

  6. E.E. Enochs, O.M.G. Jenda, Gorenstein injective and projective modules. Math. Z. 220, 611–633 (1995)

    MathSciNet  Article  Google Scholar 

  7. E.E. Enochs, O.M.G. Jenda, Relative Homological Algebra, Vol. 1, Second Revised and Extended Edition, De Gruyter Expositions in Math., vol. 30 (Walter de Gruyter, Berlin, 2011)

    Google Scholar 

  8. R.M. Fossum, P.A. Griffith, I. Reiten, Trivial Extensions of Abelian Categories (Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory), Lect. Notes in Math., vol. 456 (Springer-Verlag, Berlin, Heidelberg, New York, 1975)

    MATH  Google Scholar 

  9. V. Franjou, T. Pirashvili, Comparison of abelian categories recollements. Doc. Math. 9, 41–56 (2004)

    MathSciNet  MATH  Google Scholar 

  10. D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, Lond. Math. Soc. Lecture Note Ser., vol. 119 (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  11. O. Iyama, K. Kato, J.-I. Miyachi, Recollement on homotopy categories and Cohen–Macaulay modules. J. K-Theory 8, 507–541 (2011)

    MathSciNet  Article  Google Scholar 

  12. B. Keller, in Derived Categories and Their Uses, Handbook of Algebra, vol. 1, ed. by M. Hazewinkel (North-Holland, Amsterdam, 1996), pp. 671–701

  13. C. Psaroudakis, Homological theory of recollements of abelian categories. J. Algebra 398, 63–110 (2014)

    MathSciNet  Article  Google Scholar 

  14. C. Psaroudakis, Ø. Skartsæterhagen, Ø. Solberg, Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements. Trans. Am. Math. Soc. (Ser. B) 1, 45–95 (2014)

    MathSciNet  Article  Google Scholar 

  15. B.L. Xiong, P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras. J. Algebra Appl. 11, 65–80 (2012)

    MathSciNet  Article  Google Scholar 

  16. P. Zhang, Gorenstein-projective modules and symmetric recollements. J. Algebra 388, 65–80 (2013)

    MathSciNet  Article  Google Scholar 

Download references


This research was partially supported by NSFC (Grant No. 11971225) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referee for useful suggestions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhaoyong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Zhu, R. & Huang, Z. Gorenstein projective objects in comma categories. Period Math Hung 84, 186–202 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Gorenstein objects
  • Comma categories
  • Perfect functors
  • Recollements

Mathematics Subject Classification

  • 18G25
  • 18E10
  • 18E30