Skip to main content
Log in

Von Neumann–Davis type theorems for HLPK and Sherman functionals on Eaton triples

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this work, we generalize the von Neumann and Davis theorems on the extension of the convexity of a group-invariant norm (resp. function) from the subspace of diagonal matrices to the whole space of complex (resp. hermitian) matrices. Our generalizations go in two directions: (1) We replace the space of complex (hermitian) matrices and its subspace of diagonal matrices by an Eaton triple and its subsystem. (2) We replace the Jensen (J) functional inducing the (usual) convexity of a function by the Hardy–Littlewood–Pólya–Karamata (HLPK) functional related to Wright-convexity and by the Sherman (S) functional connected with Sherman type convexity. The obtained results are interpreted for some classes of matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Adil Khan, S. Ivelić Bradanović, J. Pečarić, On Sherman’s type inequalities for \(n\)-convex function with applications. Konuralp J. Math. 4, 255–260 (2016)

    MathSciNet  MATH  Google Scholar 

  2. M. Adil Khan, J. Khan, J. Pečarić, Generalizations of Sherman’s inequality by Montgomery identity and Green function. Electron. J. Math. Anal. Appl. 5, 1–16 (2017)

    MathSciNet  MATH  Google Scholar 

  3. R.P. Agarwal, S. Ivelić Bradanović, J. Pečarić, Generalizations of Sherman’s inequality by Lidstone’s interpolating polynomial. J. Inequal. Appl. 2016, 18 (2016). https://doi.org/10.1185/s13660-015-0935-6

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bhatia, Matrix Analysis (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  5. A.-M. Burtea, Two examples of weighted majorization. Ann. Univ. Craiova Math. Comput. Sci. Ser. 37, 92–99 (2000)

    MathSciNet  MATH  Google Scholar 

  6. C. Davis, All convex invariant functions of hermitian matrices. Arch. Math. 8, 276–278 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. M.L. Eaton, On group induced orderings, monotone functions, and convolution theorems, in IMS Lectures Notes—Monograph Series 5, ed. by Y.L. Tong (IMS, Hayward, 1984), pp. 13–25

    Google Scholar 

  8. M.L. Eaton, Group induced orderings with some applications in statistics. CWI Newsl. 16, 3–31 (1987)

    MathSciNet  Google Scholar 

  9. M.L. Eaton, M.D. Perlman, Reflection groups, generalized Schur functions, and the geometry of majorization. Ann. Probab. 5, 829–860 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. Proc. Natl. Acad. Sci. USA 35, 652–655 (1949)

    Article  MathSciNet  Google Scholar 

  11. A. Giovagnoli, H.P. Wynn, G-majorization with applications to matrix orderings. Linear Algebra Appl. 67, 111–135 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. G.M. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  13. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991)

    Book  MATH  Google Scholar 

  14. S. Ivelić Bradanović, N. Latif, J. Pečarić, Generalizations of Sherman’s theorem by Taylor’s formula. J. Inequal. Spec. Funct. 8, 18–30 (2017)

    MathSciNet  MATH  Google Scholar 

  15. S. Ivelić Bradanović, J. Pečarić, Generalizations of Sherman’s inequality. Period. Math. Hung. 74, 197–219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Karamata, Sur une inégalité rélative aux fonctions convexes. Publ. Math. Univ. Belgrade 1, 145–148 (1932)

    MATH  Google Scholar 

  17. A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, 2nd edn. (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  18. M. Niezgoda, Group majorization and Schur type inequalities. Linear Algebra Appl. 268, 9–30 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Niezgoda, G-majorization inequalities and canonical forms of matrices. J. Convex Anal. 14, 35–48 (2007)

    MathSciNet  MATH  Google Scholar 

  20. M. Niezgoda, Remarks on Sherman like inequalities for \((\alpha,\beta )\)-convex functions. Math. Inequal. Appl. 17, 1579–1590 (2014)

    MathSciNet  MATH  Google Scholar 

  21. M. Niezgoda, On Sherman method to deriving inequalities for some classes of functions related to convexity, in Advances in Mathematical Inequalities and Applications, ed. by P. Agarwal, S.S. Dragomir, M. Jleli, B. Samet (Birkhäuser, Basel, 2018)

    MATH  Google Scholar 

  22. M. Niezgoda, On Sherman–Steffensen type inequalities. Filomat 32(13), 4627–4638 (2018)

    Article  MathSciNet  Google Scholar 

  23. M. Niezgoda, On convexity and \( \psi \)-uniform convexity of \( G \)-invariant functions on an Eaton triple. J. Convex Anal. 26(3), 1001–1019 (2019)

    MathSciNet  MATH  Google Scholar 

  24. M. Niezgoda, Nonlinear Sherman type inequalities. Adv. Nonlinear Anal. 9(1), 168–175 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.T. Ng, Functions generating Schur-convex sums, in General Inequalities 5, International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik Série internationale d’Analyse numérique, vol. 80, ed. by W. Walter (Birkhäuser, Basel, 1987), pp. 433–438

    Google Scholar 

  26. S. Sherman, On a theorem of Hardy, Littlewood, Pólya, and Blackwell. Proc. Nat. Acad. Sci. USA 37, 826–831 (1957)

    Article  MATH  Google Scholar 

  27. A.G.M. Steerneman, G-majorization, group-induced cone orderings and reflection groups. Linear Algebra Appl. 127, 107–119 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. T.-Y. Tam, An extension of a result of Lewis. Electron. J. Linear Algebra 5, 1–10 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. T.-Y. Tam, Group majorization, Eaton triples and numerical range. Linear Multilinear Algebra 47, 11–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. T.-Y. Tam, Generalized Schur-concave functions and Eaton triples. Linear Multilinear Algebra 50, 113–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. T.-Y. Tam, W.C. Hill, On \(G\)-invariant norms. Linear Algebra Appl. 331, 101–112 (2001)

    MathSciNet  MATH  Google Scholar 

  32. T.-Y. Tam, W.C. Hill, Derivatives of orbital function and an extension of Berezin–Gel’fand’s theorem. Spec. Matrices 4, 333–349 (2016)

    MathSciNet  MATH  Google Scholar 

  33. C.M. Theobald, An inequality for the trace of the product of two symmetric matrices. Math. Proc. Camb. Philos. Soc. 77, 265–267 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. von Neumann, Some matrix inequalities and metrization of matric space. Tomsk. Univ. Rev. 1, 286–300 (1937)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank anonymous referee for giving valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Niezgoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niezgoda, M. Von Neumann–Davis type theorems for HLPK and Sherman functionals on Eaton triples. Period Math Hung 81, 46–64 (2020). https://doi.org/10.1007/s10998-020-00316-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-020-00316-3

Keywords

Mathematics Subject Classification

Navigation