On volumes of truncated tetrahedra with constrained edge lengths

Abstract

Truncated tetrahedra are the fundamental building blocks of hyperbolic 3-manifolds with geodesic boundary. The study of their geometric properties (in particular, of their volume) has applications also in other areas of low-dimensional topology, like the computation of quantum invariants of 3-manifolds and the use of variational methods in the study of circle packings on surfaces. The Lobachevsky–Schläfli formula neatly describes the behaviour of the volume of truncated tetrahedra with respect to dihedral angles, while the dependence of volume on edge lengths is worse understood. In this paper we prove that, for every \(\ell <\ell _0\), where \(\ell _0\) is an explicit constant, the regular truncated tetrahedron of edge length \(\ell \) maximizes the volume among truncated tetrahedra whose edge lengths are all not smaller than \(\ell \). This result provides a fundamental step in the computation of the ideal simplicial volume of an infinite family of hyperbolic 3-manifolds with geodesic boundary.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    A. Basmajian, The orthogonal spectrum of a hyperbolic manifold. Am. J. Math. 115(5), 1139–1159 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    M. Bridgeman, J. Kahn, Hyperbolic volume of manifolds with geodesic boundary and orthospectra. Geom. Funct. Anal. 20, 1210–1230 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    J. Brandts, S. Korotov, M. Krízek, J. Solc, On nonobtuse simplicial partitions. SIAM Rev. 51, 317–335 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    M. Bridgeman, Orthospectra of geodesic laminations and dilogarithm identities on moduli space. Geom. Topol. 15, 707–733 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    M. Bridgeman, S.P. Tan, Moments of the boundary hitting function for the geodesic flow on a hyperbolic manifold. Geom. Topol. 18(1), 491–520 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    M. Bridgeman, S.P. Tan, Handbook of Teichmüller Theory. IRMA lectures in mathematics and theoretical physics, identities on hyperbolic manifolds, vol. 26 (European Mathematical Society, Zürich, 2016) (pp. 19–53)

  7. 7.

    D. Calegari, Chimneys, leopard spots and the identities of Basmajian and Bridgeman. Algebraic Geom. Topol. 10(2010), 1857–1863 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    D. Calegari, Bridgeman’s orthospectrum identity. Topol. Proc. 38, 173–179 (2011)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    F. Costantino, F. Guéritaud, R. van der Veen, On the volume conjecture for polyhedra. Geom. Dedic. 179, 385–409 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Q. Chen, J. Murakami, Asymptotics of quantum \(6j-\)symbols. arXiv:1706.04887

  11. 11.

    F. Costantino, J. Murakami, On the \(sl(2,\mathbb{C})\) quantum \(6j-\)symbols and their relation to the hyperbolic volume. Quantum Topol. 4, 303–351 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    F. Costantino, \(6j-\)symbols, hyperbolic structures and the volume conjecture. Geom. Topol. 11, 1831–1854 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    R. Frigerio, M. Moraschini, The ideal simplicial volume of manifolds with boundary. Int. Math. Res. Not. IMRN (to appear)

  14. 14.

    R. Frigerio, B. Martelli, C. Petronio, Small hyperbolic 3-manifolds with geodesic boundary. Exp. Math. 13, 171–184 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    R. Frigerio, C. Petronio, Construction and recognition of hyperbolic \(3\)-manifolds with geodesic boundary. Trans. Am. Math. Soc. 356, 3243–3282 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    R. Guo, Calculus of generalized hyperbolic tetrahedra. Geom. Dedic. 153, 139–149 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    H. Hadwiger, Ungelöste probleme. Elem. Math. 11, 109–110 (1956)

    Google Scholar 

  18. 18.

    Á.G. Horváth, Formulas on hyperbolic volumes. Aequat. Math. 83, 97–116 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    R. Kellerhals, On the volume of hyperbolic polyhedra. Math. Ann. 245, 541–569 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    R. Kellerhals, The Dilogarithm and Volumes of Hyperbolic Polytopes, Mathematical Surveys and Monographs, vol. 37 (Americal Mathematical Society, New York, 1991), pp. 301–336

    Google Scholar 

  21. 21.

    R. Kellerhals, Volumes in hyperbolic 5-space. Geom. Funct. Anal. 5, 640–667 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    S. Kojima, Y. Miyamoto, The smallest hyperbolic 3-manifolds with totally geodesic boundary. J. Differ. Geom. 34, 175–192 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    A. Kolpakov, J. Murakami, Volume of a doubly truncated hyperbolic tetrahedron. Aequat. Math. 85, 449–463 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    S. Kojima, Polyhedral decomposition of hyperbolic manifolds with boundary. Proc. Work. Pure Math. 10, 37–57 (1990)

    Google Scholar 

  25. 25.

    S. Kojima, Polyhedral decomposition of hyperbolic 3-manifolds with totally geodesic boundary, aspects of low-dimensional manifolds. Adv. Stud. Pure Math. 20, 93–112 (1992)

    Article  MATH  Google Scholar 

  26. 26.

    F. Luo, A combinatorial curvature flow for compact 3-manifolds with boundary. Electron. Res. Announc. Am. Math. Soc. 11, 12–20 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    F. Luo, T. Yang, Volume and rigidity of hyperbolic polyhedral 3-manifolds. J. Topol. 11, 1–29 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    J.W. Milnor, The Schläfli Differential Formula, Collected Papers, vol. 1 (Geometry, Publish or Perish Inc, Houston, 1994), pp. 281–295

    Google Scholar 

  29. 29.

    Y. Miyamoto, On the volume and surface area of hyperbolic polyhedra. Geom. Dedic. 40, 223–236 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Y. Miyamoto, Volumes of hyperbolic manifolds with geodesic boundary. Topology 33, 613–629 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    E. Molnár, Projective metrics and hyperbolic volume. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 32, 127–157 (1989)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    J. Murakami, A. Ushijima, A volume formula for hyperbolic tetrahedra in terms of edge lengths. J. Geom. 83, 153–163 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    A. Przeworski, An upper bound on density for packings of collars about hyperplanes in \(\mathbb{H}^n\). Geom. Dedic. 163, 193–213 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    I. Rivin, Volumes of degenerating polyhedra—on a conjecture of J. W. Milnor. Geom. Dedic. 131, 73–85 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    J.M. Schlenker, Hyperideal polyhedra in hyperbolic manifolds. arXiv:math/0212355

  36. 36.

    J.-M. Schlenker, Hyperideal circle patterns. Math. Res. Lett. 12, 85–102 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    J.-M. Schlenker, Circle patterns on singular surfaces. Discrete Comput. Geom. 40, 47–102 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    B.A. Springborn, A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differ. Geom. 78, 333–367 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    J. Szirmai, Hyperball packings in hyperbolic 3-space. Mat. Vesn. 70(3), 211–222 (2018)

    MathSciNet  Google Scholar 

  40. 40.

    K. Tschirpke, The dissection of five-dimensional simplices into orthoschemes. Beitr. Algebra Geom. 35, 1–11 (1994)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    A. Ushijima, A Volume Formula for Generalised Hyperbolic Tetrahedra, Non-Euclidean Geometries. Mathematics Application, vol. 581 (Springer, New York, 2006), pp. 249–265

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco Moraschini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frigerio, R., Moraschini, M. On volumes of truncated tetrahedra with constrained edge lengths. Period Math Hung 79, 32–49 (2019). https://doi.org/10.1007/s10998-018-00277-8

Download citation

Keywords

  • Truncated tetrahedron
  • Schläfli formula
  • Hyperbolic manifold
  • Geodesic boundary
  • Dilogarithm

Mathematics Subject Classification

  • Primary: 52A55
  • Secondary: 52A38
  • 52B10
  • 57M50