Periodica Mathematica Hungarica

, Volume 75, Issue 2, pp 295–301 | Cite as

On the Diophantine system \(f(z)\,{=}\,f(x)f(y)\,{=}\,f(u) f(v)\)

  • Yong ZhangEmail author
  • Zhongyan Shen


We show that the Diophantine system
$$\begin{aligned} f(z)=f(x)f(y)=f(u)f(v) \end{aligned}$$
has infinitely many nontrivial positive integer solutions for \(f(X)=X^2-1\), and infinitely many nontrivial rational solutions for \(f(X)=X^2+b\) with nonzero integer b.


Diophantine system Positive integer solution Rational solution Elliptic curve 

Mathematics Subject Classification

Primary 11D25 Secondary 11D72 11G05 


  1. 1.
    M.A. Bennett, The Diophantine equation \((x^k-1)(y^k-1)=(z^k-1)^t\). Indag. Math. 18, 507–525 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Y. Bugeaud, On the Diophantine equation \((x^k-1)(y^k-1)=(z^k-1)\). Indag. Math. 15, 21–28 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    D. Chen, T. Cai, The decomposition of triangular numbers. Rocky Mt. J. Math. 43, 75–81 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    H. Cohen, Number Theory, Vol. I: Tools and Diophantine Equations, Graduate Texts in Mathematics, vol. 239 (Springer, New York, 2007)Google Scholar
  5. 5.
    L.J. Mordell, Diophantine Equations, Pure and Applied Mathematics, vol. 30 (Academic Press, London, 1969)Google Scholar
  6. 6.
    A. Schinzel, U. Zannier, Distribution of solutions of Diophantine equations \(f_1(x_1)f_2(x_2)=f_3(x_3)\), where \(f_i\) are polynomials. I. Rend. Sem. Mat. Univ. Padova 87, 39–68 (1992)MathSciNetGoogle Scholar
  7. 7.
    A. Schinzel, U. Zannier, Distribution of solutions of Diophantine equations \(f_1(x_1)f_2(x_2)=f_3(x_3)\), where \(f_i\) are polynomials. II. Rend. Sem. Mat. Univ. Padova 92, 29–46 (1994)MathSciNetGoogle Scholar
  8. 8.
    J.H. Silverman, J. Tate, Rational Points on Elliptic Curves (Springer, Berlin, 1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts in Mathematics, 106 (Springer, Dordrecht, 2009)CrossRefGoogle Scholar
  10. 10.
    Sz Tengely, M. Ulas, On products of disjoint blocks of arithmetic progressions and related equations. J. Number Theory 165, 67–83 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Y. Zhang, T. Cai, On the Diophantine equation \(f(x)f(y)=f(z^2)\). Publ. Math. Debrecen 82, 31–41 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Y. Zhang, T. Cai, A note on the Diophantine equation \(f(x)f(y)=f(z^2)\). Period. Math. Hung. 70, 209–215 (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Y. Zhang, T. Cai, On products of consecutive arithmetic progressions. J. Number Theory 147, 287–299 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Y. Zhang, Z. Shen, Arithmetic properties of polynomials.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsChangsha University of Science and TechnologyChangshaPeople’s Republic of China
  2. 2.Department of MathematicsZhejiang International Studies UniversityHangzhouPeople’s Republic of China

Personalised recommendations