Skip to main content
Log in

Convergence of multi-dimensional integral operators and applications

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper we investigate a general multi-dimensional integral operator \(V_{T}\). Under the condition that the kernel function of \(V_{T}\) is in a suitable Herz space, we get several convergence theorems about norm and almost everywhere convergence and convergence at Lebesgue points. The multi-dimensional convergence is investigated over cones and cone-like sets. As special cases we consider three multi-dimensional integral operators, the \(\theta \)-summation of Fourier transforms and Fourier series and the discrete wavelet transforms. The convergence results are formulated for functions from the Wiener amalgam spaces and variable Lebesgue spaces, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. G. Alexits, Konvergenzprobleme der Orthogonalreihen (Akadémiai Kiadó, Budapest, 1960)

    MATH  Google Scholar 

  2. P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation (Birkhäuser Verlag, Basel, 1971)

    Book  MATH  Google Scholar 

  3. D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis (Birkhäuser/Springer, New York, 2013)

  4. D. Cruz-Uribe, A. Firorenza, C.J. Neugebauer, The maximal function on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 28(1), 223–238 (2003)

  5. D. Cruz-Uribe, A. Fiorenza, J. Martell, C. Pérez, The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)

  6. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  7. L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  8. H.G. Feichtinger, An elementary approach to Wiener’s third Tauberian theorem for the Euclidean n-space (1987)

  9. H. Feichtinger, F. Weisz, The Segal algebra \( {S}_0({\mathbb{R}}^d)\) and norm summability of Fourier series and Fourier transforms. Monatshefte Math. 148, 333–349 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Feichtinger, F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Camb. Phil. Soc. 140, 509–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Gát, Pointwise convergence of cone-like restricted two-dimensional \((C,1)\) means of trigonometric Fourier series. J. Apprais. Theory 149, 74–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. U. Goginava, The maximal operator of the Marcinkiewicz-Fejér means of \(d\)-dimensional Walsh–Fourier series. East J. Approx. 12, 295–302 (2006)

    MathSciNet  Google Scholar 

  13. C. Heil, An introduction to weighted Wiener amalgams. in Wavelets and their Applications, ed. by M. Krishna, R. Radha, S. Thangavelu (Allied Publishers Private Limited, New Delhi, 2003), pp. 183–216

  14. E. Hernández, G. Weiss, A First Course on Wavelets (CRC Press, Boca Raton, 1996)

    Book  MATH  Google Scholar 

  15. S.E. Kelly, M.A. Kon, L.A. Raphael, Local convergence for wavelet expansions. J. Funct. Anal. 126, 102–138 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. S.E. Kelly, M.A. Kon, L.A. Raphael, Pointwise convergence of wavelet expansions. Bull. Am. Math. Soc. 30, 87–94 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Kováčik, J. Rákosník, On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41(4), 592–618 (1991)

    MATH  Google Scholar 

  18. H. Lebesgue, Recherches sur la convergence des séries de Fourier. Math. Ann. 61, 251–280 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Simon, \((C,\alpha )\) summability of Walsh–Kaczmarz–Fourier series. J. Approx. Theory 127, 39–60 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals (Princeton University Press, Princeton, NJ, 1993)

    MATH  Google Scholar 

  21. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, NJ, 1971)

    MATH  Google Scholar 

  22. K. Szarvas, F. Weisz, Weak- and strong type inequality for the cone-like maximal operator in variable Lebesgue spaces (preprint)

  23. K. Szarvas, F. Weisz, Variable Lebesgue spaces and continuous wavelet transforms. Stud. Univ. Babeş-Bolyai Math. 59(4), 497–512 (2014)

    Google Scholar 

  24. R.M. Trigub, E.S. Belinsky, Fourier Analysis and Approximation of Functions (Kluwer Academic Publishers, Dordrecht, 2004)

    Book  Google Scholar 

  25. F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Spaces. Mathematics and Its Applications (Kluwer Academic Publishers, Dordrecht, 2002)

    Book  MATH  Google Scholar 

  26. F. Weisz, Herz spaces and restricted summability of Fourier transforms and Fourier series. J. Math. Anal. Appl. 344, 42–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Weisz, Herz spaces and pointwise summability of Fourier series. Math. Pannon. 23, 235–256 (2012)

    MathSciNet  MATH  Google Scholar 

  28. F. Weisz, Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory 7, 1–179 (2012)

    MathSciNet  MATH  Google Scholar 

  29. F. Weisz, Inversion formulas for the continuous wavelet transform. Acta Math. Hung. 138, 237–258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hungarian Scientific Research Funds (OTKA) No K115804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Weisz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szarvas, K., Weisz, F. Convergence of multi-dimensional integral operators and applications. Period Math Hung 74, 40–66 (2017). https://doi.org/10.1007/s10998-016-0157-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-016-0157-9

Keywords

Mathematics Subject Classification

Navigation