Skip to main content
Log in

Connections between central factorial numbers and Bernoulli polynomials

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In the paper, the author presents two finite discrete convolutions that combines central factorial numbers of both kinds and Bernoulli polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.E. Appell, Sur une classe de polynomes. Ann. Sci. Éc. Norm. Supér. 9(2), 119–144 (1882)

    MathSciNet  Google Scholar 

  2. J. Bernoulli, Ars conjectandi, Basel, (1713), posthumously published

  3. P.L. Butzer, M. Schmidt, E.L. Stark, L. Vogt, Central factorial numbers, their main properties and some applications. Numer. Funct. Anal. Optim. 10, 419–488 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. P.L. Butzer, M. Schmidt, Central factorial numbers and their role in finite difference calculus and approximation, in Approximation Theory. Colloquia Mathematica Soc. Janos Bolyai, vol. 58, ed. by J. Szabados, K. Tandori, (1990), pp. 127–150

  5. L. Carlitz, J. Riordan, The divided central differences of zero. Can. J. Math. 15, 94–100 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Comtet, Nombres de Stirling généraux et fonctions symetriques. C. R. Acad. Sci. Paris Sér. A 275, 747–750 (1972)

    MathSciNet  MATH  Google Scholar 

  7. M. Eastwood, H. Goldschmidt, Zero-energy fields on complex projective space. J. Differ. Geom. 94(1), 1–186 (2013)

    MathSciNet  MATH  Google Scholar 

  8. L. Euler, Methodus generalis summandi progressiones. Comment. Acad. Sci. Petrop. 6, 1738 (1738)

    Google Scholar 

  9. W.N. Everitt, K.H. Kwon, L.L. Littlejohn, R. Wellman, G.J. Yoon, JacobiStirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. J. Comput. Appl. Math. 208, 29–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Gelineau, J. Zeng, Combinatorial interpretations of the Jacobi–Stirling numbers. Electron. J. Combin. 17, R70 (2010)

    MathSciNet  MATH  Google Scholar 

  11. C. Jordan, Calculus of Finite Differences (Chelsea, New York, 1960)

    MATH  Google Scholar 

  12. D.H. Lehmer, A new approach to Bernoulli polynomials. Amer. Math. Mon. 95, 905–911 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.F. Loureiro, New results on the Bochner condition about classical orthogonal polynomials. J. Math. Anal. Appl. 364, 307–323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Lucas, Théorie des Nombres (Gauthier-Villars, Paris, 1891)

    Google Scholar 

  15. M. Merca, A note on the Jacobi–Stirling numbers. Integr. Transform. Spec. Funct. 25(2), 196–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.L. Raabe, Zuruckfuhrung einiger summen und bestimmten integrale auf die Jacob Bernoullische function. J. Reine Angew. Math. 42, 348–376 (1851)

    Article  MathSciNet  Google Scholar 

  17. J. Riordan, Combinatorial Identities (Wiley, New York, 1968)

    MATH  Google Scholar 

  18. S.M. Roman, G.-C. Rota, The umbral calculus. Adv. Math. 27, 95–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Shadrin, L. Spitz, D. Zvonkine, On double Hurwitz numbers with completed cycles. J. Lond. Math. Soc. 86(2), 407–432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.F. Steffensen, Interpolation (The Williams & Wilkins Company, Baltimore, 1927)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Merca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merca, M. Connections between central factorial numbers and Bernoulli polynomials. Period Math Hung 73, 259–264 (2016). https://doi.org/10.1007/s10998-016-0140-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-016-0140-5

Keywords

Mathematics Subject Classification

Navigation