Periodica Mathematica Hungarica

, Volume 72, Issue 2, pp 248–251 | Cite as

On a characterization of commutativity for \(C^*\)-algebras via gyrogroup operations

  • Toshikazu Abe
  • Osamu HatoriEmail author


We show that a unital \(C^*\)-algebra is commutative if and only if the gyrogroup of the set of positive invertible elements is in fact a group.


Gyrocommutative gyrogroup Positive invertible element  \(C^*\)-algebra Commutativity 

Mathematics Subject Classification

46L05 20N05 


  1. 1.
    T. Abe, O. Hatori, Generalized Gyrovector spaces and a Mazur-Ulam theorem. Publ. Math. Debrecen, 87, 393–413 (2015)Google Scholar
  2. 2.
    R. Beneduci, L. Molnár, On the standard K-loop structures of positive invertible elements in a \(C^*\)-algebra. J. Math. Anal. Appl. 420, 551–562 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M.J. Crabb, J. Duncan, C.M. McGregor, Characterizations of commutativity for \(C^*\)-algebras. Glasgow Math. J. 15, 172–175 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J.-S. Jeang, C.-C. Ko, On the commutativity of \(C^*\)-algebras. Manuscr. Math. 115, 195–198 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    G. Ji, J. Tomiyama, On a characterizations of commutativity of \(C^*\)-algebras. Proc. Am. Math. Soc. 131, 3845–3849 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. Kiechle, Theory of K-Loops. Lecture Notes in Mathematics, vol. 1778 (Springer, Berlin, 2002)Google Scholar
  7. 7.
    L. Molnár, A few conditions for a \(C^*\)-algebra to be commutative, Abstr. Appl. Anal. Article ID 705836 (2014)Google Scholar
  8. 8.
    T. Ogasawara, A theorem on operator algebras. J. Sci. Hiroshima Univ. 18, 307–309 (1955)MathSciNetzbMATHGoogle Scholar
  9. 9.
    L.V. Sabinin, L.L. Sabinina, L.V. Sbitneva, On the notion of gyrogroup. Aequ. Math. 56, 11–17 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. Sherman, Order in operator algebras. Am. J. Math. 73, 227–232 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Uchiyama, Commutativity of selfadjoint operators. Pac. J. Math. 161, 385–392 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A.A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity (World Scientific, Hackensack, 2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    W. Wu, An order characterization of commutativity for \(C^*\)-algebras. Proc. Am. Math. Soc. 129, 983–987 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Mathematical Science, Graduate School of Science and TechnologyNiigata UniversityNiigataJapan
  2. 2.Department of Mathematics, Faculty of ScienceNiigata UniversityNiigataJapan

Personalised recommendations