Skip to main content
Log in

The complete solution of the Diophantine equation \((4m^2+1)^x+(5m^2-1)^y=(3m)^z\)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this short note we give all solutions to the exponential Diophantine equation \((4m^2+1)^x+(5m^2-1)^y=(3m)^z\) where \(20<m<90\) and \(m\equiv 3\) \((mod\quad 6)\). In view of earlier theorems of Terai, and of Su and Li, this result yields a complete solution set to a problem of Terai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Alex, L.L. Foster, On the diophatine equation \(1+x+y=z\). Rocky Mt. J. Math. 22, 11–62 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. L.J. Alex, L.L. Foster, On the diophatine equation \(w+x+y=z\) with \(wxyz=2^r3^s5^t\). Rev. Mat. Univ. Complut. Madr. 8, 13–48 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Cs. Bertók, L. Hajdu, A Hasse-type principle for exponential Diophantine equations and its applications. Math. Comp. 85, 849–860 (2016)

  4. J.L. Brenner, L.L. Foster, Exponential Diophantine equations. Pac. J. Math. 101, 263–301 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Erdős, C. Pomerance, E. Schmutz, Carmichael’s lambda function. Acta Arith. 58, 365–385 (1991)

    MATH  Google Scholar 

  6. L. Jes̀manowicz, Some remarks on Pythagorean numbers. Wiadom. Mat. 1, 196–202 (1955/1956)

  7. W. A. Stein et al., Sage Mathematics Software (Version 6.2), The Sage Development Team, (2014), http://www.sagemath.org

  8. J. Su, X. Li, The exponential diophantine equation \((4m^2+1)^x+(5m^2-1)^y=(3m)^z\). Abstr. Appl. Anal. 2014, Article ID 670175 (2014)

  9. N. Terai, The Diophantine equation \(a^x+b^y=c^z\). Proc. Jpn. Acad. Ser. A Math. Sci. 70, 22–26 (1994)

    Article  MATH  Google Scholar 

  10. N. Terai, The Diophantine equation \(a^x+b^y=c^z\), II. Proc. Jpn. Acad. Ser. A Math. Sci. 71, 109–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Terai, The Diophantine equation \(a^x+b^y=c^z\), III. Proc. Jpn. Acad. Ser. A Math. Sci. 72, 20–22 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Terai, On the exponential Diophantine equation \((4m^2+1)^x+(5m^2-1)^y=(3m)^z\). Int. J. Algebra 6, 1135–1146 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the referee for her/his useful remark, and to Attila Pethő for calling his attention to the problem. Research supported by the TÁMOP-4.2.4.A/2-11-1-2012-0001 project. The project has been supported by the European Union, co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csanád Bertók.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertók, C. The complete solution of the Diophantine equation \((4m^2+1)^x+(5m^2-1)^y=(3m)^z\) . Period Math Hung 72, 37–42 (2016). https://doi.org/10.1007/s10998-016-0111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-016-0111-x

Keywords

Mathematics Subject Classification

Navigation