Advertisement

Periodica Mathematica Hungarica

, Volume 69, Issue 1, pp 2–8 | Cite as

László Fuchs’s contributions to commutative ring theory

  • Bruce Olberding
  • Kulumani M. RangaswamyEmail author
Article
  • 99 Downloads

Abstract

In commemoration of the 90th birthday of Professor Laszlo Fuchs, this article gives a short account of some of his contributions to commutative ring theory.

Keywords

Commutative rings Quasi-primary Primal and completely irreducible ideals Arithmetical rings Prufer domains Prime divisor of an ideal 

References

  1. 1.
    L. Fuchs, On quasi-primary ideals. Acta Univ. Szeged. Sect. Sci. Math. 11, 174–183 (1947)zbMATHMathSciNetGoogle Scholar
  2. 2.
    L. Fuchs, On relatively primary ideals. Norske Vid. Selsk. Forh. Trondhjem 20(7), 25–28 (1947)zbMATHMathSciNetGoogle Scholar
  3. 3.
    L. Fuchs, Further generalization of the notion of relatively prime ideals. Bull. Calcutta Math. Soc. 39, 143–146 (1947)zbMATHMathSciNetGoogle Scholar
  4. 4.
    L. Fuchs, A theorem on the relative norm of an ideal. Comment. Math. Helv. 21, 29–43 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    L. Fuchs, Domaines d’intégrité où tout idéal est quasi primaire. (French). C. R. Acad. Sci. Paris 226, 1660–1662 (1948)zbMATHMathSciNetGoogle Scholar
  6. 6.
    L. Fuchs, A condition under which an irreducible ideal is primary. Quart. J. Math. Oxford Ser. 19, 235–237 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    L. Fuchs, A note on half-prime ideals. Norske Vid. Selsk. Forh. Trondhjem 20(28), 112–114 (1948)zbMATHMathSciNetGoogle Scholar
  8. 8.
    L. Fuchs, The extension of the notion ”relatively prime”. Acta Univ. Szeged. Sect. Sci. Math. 13, 43–46 (1949)zbMATHMathSciNetGoogle Scholar
  9. 9.
    L. Fuchs, Über die Ideale arithmetischer Ringe. (German). Comment. Math. Helv. 23, 334–341 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    L. Fuchs, Some theorems on algebraic rings. Acta Math. 81, 285–289 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    L. Fuchs, A note on the descending chain condition. Norske Vid. Selsk. Forh. Trondheim 21(14), 57–59 (1949)zbMATHMathSciNetGoogle Scholar
  12. 12.
    L. Fuchs, On a special property of the principal components of an ideal. Norske Vid. Selsk. Forh. Trondheim 22(9), 28–30 (1949)MathSciNetGoogle Scholar
  13. 13.
    L. Fuchs, On primal ideals. Proc. Amer. Math. Soc. 1, 1–6 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    L. Fuchs, A note on the idealizer of a subring. Publ. Math. Debrecen 1, 160–161 (1950)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Ladislas. Fuchs, The meet-decomposition of elements in lattice-ordered semi-groups. Acta Sci. Math. Szeged 12, (1950). Leopoldo FejŽr et Frederico Riesz LXX annos natis dedicatus, Pars A, 105–111Google Scholar
  16. 16.
    L. Fuchs, The generalization of the valuation theory. Duke Math. J. 18, 19–26 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    L. Fuchs, A remark on the Jacobson radical. Acta Sci. Math. Szeged 14, 167–168 (1952)zbMATHMathSciNetGoogle Scholar
  18. 18.
    L. Fuchs, T. Szele, Contribution to the theory of semisimple rings. Acta Math. Acad. Sci. Hungar. 3, 233–239 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    L. Fuchs, On subdirect unions. I. Acta Math. Acad. Sci. Hungar. 3, 103–120 (1952)CrossRefzbMATHGoogle Scholar
  20. 20.
    L. Fuchs, On a new type of radical. (Hungarian) Comptes rendus du premier congrès des mathématiciens Hongrois, 27 Août-2 Septembre 1950, pp. 435–443Google Scholar
  21. 21.
    L. Fuchs, On the fundamental theorem of commutative ideal theory. Acta Math. Acad. Sci. Hungar. 5, 95–99 (1954)CrossRefzbMATHGoogle Scholar
  22. 22.
    L. Fuchs, On the principal theorem of ideal theory. (Hungarian) Magyar Tud. Akad. Mat. Fiz. Oszt. Közl 3, 87–95 (1954)Google Scholar
  23. 23.
    L. Fuchs, A lattice-theoretic discussion of some problems in additive ideal theory. Acta Math. Acad. Sci. Hungar. 5, 299–313 (1954)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    L. Fuchs, On a new type of radical. Acta Sci. Math. Szeged 16, 43–53 (1955)zbMATHMathSciNetGoogle Scholar
  25. 25.
    L. Fuchs, Ringe und ihre additive Gruppe. (German). Publ. Math. Debrecen 4, 488–508 (1956)MathSciNetGoogle Scholar
  26. 26.
    T. Szele, L. Fuchs, On Artinian rings. Acta Sci. Math. Szeged 17, 30–40 (1956)zbMATHMathSciNetGoogle Scholar
  27. 27.
    L. Fuchs, Wann folgt die Maximalbedingung aus der Minimalbedingung? (German) Arch. Math. (Basel) 8, 317–319 (1957)CrossRefzbMATHGoogle Scholar
  28. 28.
    L. Fuchs, Partial ordered algebraic syst. (Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc, Reading, Mass.-Palo Alto, Calif.-London, Pergamon Press, 1963)Google Scholar
  29. 29.
    L. Fuchs, On the class of semigroups of Prüfer domains, Abelian groups and modules, in textitProceedings of the Dublin 1998 conference, Birkhäuser, 1999, 319–326Google Scholar
  30. 30.
    L. Fuchs, L. Salce, Modules over non-Noetherian domains, Math. Surveys and Monographs, Amer. Math. Soc. 84, Providence, RI (2001)Google Scholar
  31. 31.
    László Fuchs’ 70th birthday, Periodica Mathematics Hungarica, 32 (1996) 1–12Google Scholar
  32. 32.
    R. Goebel, László Fuchs - A personal evaluation of his contributions to mathematics. Periodica Math. Hungarica 32, 13–29 (1996)CrossRefzbMATHGoogle Scholar
  33. 33.
    L.Salce, László Fuchs and his “moddom” work, Abelian groups, rings and modules, in textit Proceedings of the Perth conference, Contemporary Math., American Math. Soc. 273 (2001), 3–7Google Scholar
  34. 34.
    L. Fuchs, E. Mosteig, Ideal theory in Prüfer domains-an unconventional approach. J. Algebra 252(2), 411–430 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    L. Fuchs, R. Reis, On lattice-ordered commutative semigroups. Algebra Universalis 50(3–4), 341–357 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    L. Fuchs, W. Heinzer, B. Olberding, Maximal prime divisors in arithmetical rings. Rings, modules, algebras, and abelian groups, 189–203, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004Google Scholar
  37. 37.
    L. Fuchs, W. Heinzer, B. Olberding, Commutative ideal theory without finiteness conditions: primal ideals. Trans. Amer. Math. Soc. 357(7), 2771–2798 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    L. Fuchs, W. Heinzer, B. Olberding, Commutative ideal theory without finiteness conditions: completely irreducible ideals. Trans. Amer. Math. Soc. 358(7), 3113–3131 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    L. Fuchs, W. Heinzer, B. Olberding, Commutative ideal theory without finiteness conditions: irreducibility in the quotient field. Abelian groups, rings, modules, and homological algebra, 121–145, Lect. Notes Pure Appl. Math., 249, Chapman & Hall/CRC, Boca Raton, FL, 2006Google Scholar
  40. 40.
    K. Kaarli, A.F. Pixley, Polynomial comp. algebraic syst. (Chapman & Hall/CRC, Boca Raton, FL, 2001)Google Scholar
  41. 41.
    M. Knebusch, D. Zhang, Manis valuations and Prüfer extensions I: a new chapter in commutative algebra, vol. 1791, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 2002)Google Scholar
  42. 42.
    A.F. Pixley, Completeness in arithmetical algebras. Algebra Universalis 2, 179–196 (1972)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Mexico State UniversityLas CrucesUSA
  2. 2.Department of MathematicsUniversity of Colorado at Colorado SpringsColorado SpringsUSA

Personalised recommendations