Skip to main content

Disjoint empty convex pentagons in planar point sets

Abstract

In this paper we obtain the first non-trivial lower bound on the number of disjoint empty convex pentagons in planar points sets. We show that the number of disjoint empty convex pentagons in any set of n points in the plane, no three on a line, is at least \(\left\lfloor {\tfrac{{5n}} {{47}}} \right\rfloor \). This bound can be further improved to \(\tfrac{{3n - 1}} {{28}} \) for infinitely many n.

This is a preview of subscription content, access via your institution.

References

  1. I. Bárány and G. Károlyi, Problems and results around the Erdős-Szekeres convex polygon theorem, JCDCG, LNCS 2098, 2001, 91–105.

  2. B. B. Bhattacharya and S. Das, Disjoint empty convex pentagons in planar point sets, 2011, http://arxiv.org/abs/1108.3895.

  3. B. B. Bhattacharya and S. Das, On the minimum size of a point set containing a 5-hole and a disjoint 4-hole, Studia Sci. Math. Hungar., 48 (2011), 445–457.

    MATH  Google Scholar 

  4. P. Erdős, Some more problems on elementary geometry, Aust. Math. Soc. Gaz., 5 (1978), 52–54.

    Google Scholar 

  5. P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compo. Math., 2 (1935), 463–470.

    Google Scholar 

  6. T. Gerken, Empty convex hexagons in planar point sets, Discrete Comput. Geom., 39 (2008), 239–272.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Harborth, Konvexe Funfecke in ebenen Punktmengen, Elem. Math., 33(5) (1978), 116–118.

    MathSciNet  MATH  Google Scholar 

  8. J.D. Horton, Sets with no empty convex 7-gons, Canad. Math. Bull., 26 (1983), 482–484.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Hosono and M. Urabe, On the minimum size of a point set containing two non-intersecting empty convex polygons, JCDCG, LNCS 3742, 2005, 117–122.

  10. K. Hosono and M. Urabe, A minimal planar point set with specified disjoint empty convex subsets, KyotoCGGT, LNCS 4535, 2008, 90–100.

  11. K. Hosono and M. Urabe, On the number of disjoint convex quadrilaterals for a planar point set, Comput. Geom., 20 (2001), 97–104.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Matoušek, Lectures on Discrete Geometry, Springer, 2002.

  13. W. Morris and V. Soltan, The Erdős-Szekeres problem on points in convex posi-tion — A survey, Bull. Amer. Math. Soc., 37(4) (2000), 437–458.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. M. Nicolás, The empty hexagon theorem, Discrete Comput. Geom., 38 (2007), 389–397.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Urabe, On a partition into convex polygons, Discrete Appl. Math., 64 (1996), 179–191.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Valtr, On empty hexagons, Surveys on Discrete and Computational Geometry, Twenty Years Later (eds. J. E. Goodman, J. Pach, R. Pollack), AMS, 2008, 433–441.

  17. L. Wu and R. Ding, Reconfirmation of two results on disjoint empty convex polygons, Discrete geometry, combinatorics and graph theory, LNCS 4381, 2007, 216–220.

  18. C. Xu and R. Ding, On the empty convex partition of a finite set in the plane, Chinese Annals of Math. B, 23(4) (2002), 487–494.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaswar B. Bhattacharya.

Additional information

Communicated by Imre Bárány

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhattacharya, B.B., Das, S. Disjoint empty convex pentagons in planar point sets. Period Math Hung 66, 73–86 (2013). https://doi.org/10.1007/s10998-013-9078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-013-9078-z

Mathematics subject classification numbers

Key words and phrases