Periodica Mathematica Hungarica

, Volume 59, Issue 2, pp 173–183 | Cite as

Restricted maximal operators of Fejér means of double Walsh-Fourier series

  • Ushangi GoginavaEmail author


The main aim of this paper is to prove that there exists a martingale fH 1 2/▭ such that the restricted maximal operators of Fejér means of twodimensional Walsh-Fourier series and conjugate Walsh-Fourier series does not belong to the space weak-L 1/2.

Key words and phrases

Walsh function Hardy space maximal operator 

Mathematics subject classification number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA, 41 (1955), 558–591.CrossRefMathSciNetGoogle Scholar
  2. [2]
    N. J. Fujii, Cesàro summability of Walsh-Fourier series, Proc. Amer. Math. Soc., 77 (1979), 111–116.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Gát, On (C, 1) summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math., 130 (1998), 135–148.zbMATHMathSciNetGoogle Scholar
  4. [4]
    U. Goginava, The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx., 12:3 (2006), 295–302.MathSciNetGoogle Scholar
  5. [5]
    U. Goginava, Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar., 115 (2007), 333–340.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    F. Schipp, Über gewisse Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 18 (1975), 189–195.MathSciNetGoogle Scholar
  7. [7]
    P. Simon, Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131 (2000), 321–334.CrossRefMathSciNetGoogle Scholar
  8. [8]
    F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer, Berlin — Heidelberg — New York, 1994.zbMATHGoogle Scholar
  9. [9]
    F. Weisz, Cesàro summability of one and two-dimensional Walsh-Fourier series, Anal. Math., 22 (1996), 229–242.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc., 348 (1996), 2169–2181.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    F. Weisz, The maximal (C, α, β) operator of two-paremeter Walsh-Fourier series, J. Fourier Anal. Appl., 6 (2000), 389–401.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    F. Weisz, Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.Google Scholar
  13. [13]
    F. Weisz, ϑ-summability of Fourier series, Acta Math. Hungar., 103 (2004), 139–176.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Institute of Mathematics, Faculty of Exact and Natural SciencesTbilisi State UniversityTbilisiGeorgia

Personalised recommendations