Advertisement

Periodica Mathematica Hungarica

, Volume 59, Issue 2, pp 173–183 | Cite as

Restricted maximal operators of Fejér means of double Walsh-Fourier series

  • Ushangi GoginavaEmail author
Article
  • 25 Downloads

Abstract

The main aim of this paper is to prove that there exists a martingale fH 1 2/▭ such that the restricted maximal operators of Fejér means of twodimensional Walsh-Fourier series and conjugate Walsh-Fourier series does not belong to the space weak-L 1/2.

Key words and phrases

Walsh function Hardy space maximal operator 

Mathematics subject classification number

42C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA, 41 (1955), 558–591.CrossRefMathSciNetGoogle Scholar
  2. [2]
    N. J. Fujii, Cesàro summability of Walsh-Fourier series, Proc. Amer. Math. Soc., 77 (1979), 111–116.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Gát, On (C, 1) summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math., 130 (1998), 135–148.zbMATHMathSciNetGoogle Scholar
  4. [4]
    U. Goginava, The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx., 12:3 (2006), 295–302.MathSciNetGoogle Scholar
  5. [5]
    U. Goginava, Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar., 115 (2007), 333–340.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    F. Schipp, Über gewisse Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 18 (1975), 189–195.MathSciNetGoogle Scholar
  7. [7]
    P. Simon, Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131 (2000), 321–334.CrossRefMathSciNetGoogle Scholar
  8. [8]
    F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer, Berlin — Heidelberg — New York, 1994.zbMATHGoogle Scholar
  9. [9]
    F. Weisz, Cesàro summability of one and two-dimensional Walsh-Fourier series, Anal. Math., 22 (1996), 229–242.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc., 348 (1996), 2169–2181.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    F. Weisz, The maximal (C, α, β) operator of two-paremeter Walsh-Fourier series, J. Fourier Anal. Appl., 6 (2000), 389–401.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    F. Weisz, Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.Google Scholar
  13. [13]
    F. Weisz, ϑ-summability of Fourier series, Acta Math. Hungar., 103 (2004), 139–176.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Institute of Mathematics, Faculty of Exact and Natural SciencesTbilisi State UniversityTbilisiGeorgia

Personalised recommendations