Advertisement

Periodica Mathematica Hungarica

, Volume 55, Issue 1, pp 97–112 | Cite as

The equations of a holomorphic subspace in a complex Finsler space

  • Gheorghe MunteanuEmail author
Article

Abstract

In [Mu1] we underlined the motifs of holomorphic subspaces in a complex Finsler space: induced nonlinear connection, coupling connections, and the induced tangent and normal connections. In the present paper we investigate the equations of Gauss, H-and A-Codazzi, and Ricci equations of a holomorphic subspace. We deduce the link between the holomorphic curvatures of the Chern-Finsler connection and its induced tangent connection. Conditions for totally geodesic holomorphic subspaces are obtained.

Key words and phrases

holomorphic subspaces complex Finsler spaces 

Mathematics subject classification number

53B40 53B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-P]
    M. Abate and G. Patrizio, Finsler Metrics — A Global Approach, Lecture Notes in Math. 1591, Springer-Verlag, 1994.Google Scholar
  2. [Ai1]
    T. Aikou, On complex Finsler manifolds, Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., 24 (1991), 9–25.zbMATHGoogle Scholar
  3. [Ai2]
    T. Aikou, Finsler geometry on complex vector bundles, A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press, 2004, 83–105.Google Scholar
  4. [Al1]
    N. Aldea, On Chern complex linear connection, Bull. Math. Soc. Sci. Math. Romaine, 45 (2002), 119–131.Google Scholar
  5. [Al2]
    N. Aldea, Complex Finsler spaces of constant holomorphic curvature, Diff. Geom. and its Appl., Proc. Conf. Prague, 2004, Charles Univ., Prague, 2005, 175–186.Google Scholar
  6. [An]
    M. Anastasiei, On Miron’s theory of subspaces in Finsler spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 30 (1984), no. 4, 11–14.zbMATHGoogle Scholar
  7. [Be]
    A. Bejancu, On the theory of Finsler subspaces, Finslerian Geom., Kluwer Acad. Publ., 109 (2000), 111–129.Google Scholar
  8. [B-F]
    A. Bejancu and H.R. Faran, The geometry of pseudo-Finsler submanifolds, Kluwer Acad. Publ., 2000.Google Scholar
  9. [C-W]
    K. Chandler and P.-M. Wong, On the holomorphic sectional and bisectional curvatures in complex Finsler geometry, Period. Math. Hungar., 48 (2004), 93–123.zbMATHCrossRefGoogle Scholar
  10. [C-Y-Y]
    X. Chen, W. Yang and W. Yang, On the Chern connection of Finsler submanifolds, Acta Math. Sci. Ser. B, 20 (2000), 551–557.zbMATHGoogle Scholar
  11. [Ma]
    M. Matsumoto, The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107–144.zbMATHGoogle Scholar
  12. [Mi]
    R. Miron, A nonstandard theory of hypersurfaces in Finsler spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 30 (1984), no. 5, 35–53.zbMATHGoogle Scholar
  13. [M-A]
    R. Miron and M. Anastasiei, The geometry of Lagrange Spaces; Theory and Applications, FTPH 59, Kluwer Acad. Publ., 1994.Google Scholar
  14. [Mu1]
    G. Munteanu, Complex spaces in Finsler, Lagrange and Hamilton geometries, FTPH 141, Kluwer Acad. Publ., 2004.Google Scholar
  15. [Mu2]
    G. Munteanu, Projective complex Finsler metrics, Period. Math. Hungar., 48 (2004), 141–150.zbMATHCrossRefGoogle Scholar
  16. [M-P]
    G. Munteanu and G. Pitiş, Holomorphic subspaces of a complex Finsler space, Algebras Groups Geom., 21 (2004), 317–330.zbMATHGoogle Scholar
  17. [Ro]
    H. I. Royden, Complex Finsler Spaces, Contemp. Math., 49 (1986), 119–124.Google Scholar
  18. [Ru]
    H. Rund, Curvature properties of hypersurfaces of Finsler and Minkowskian spaces, Tensor (N.S.), 14 (1963), 226–224.zbMATHGoogle Scholar
  19. [SZ]
    Z. Shen, On Finsler geometry of submanifolds, Math. Ann., 311 (1998), 549–576.zbMATHCrossRefGoogle Scholar
  20. [Wo]
    P.-Mann Wong, A survey of complex Finsler geometry, Adv. Stud. Pure Math., to appear.Google Scholar
  21. [Wu]
    H. Wu, A remark on holomorphic sectional curvature, Indiana Univ. Math. J., 22 (1973), 1103–1108.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsTransilvania University of BraşovBraşovRomania

Personalised recommendations