Periodica Mathematica Hungarica

, Volume 55, Issue 1, pp 61–79

# Semilattice orders on the homomorphic images of the Rédei semigroup

• Kamilla Kátai-Urbán
• Árpád Tritz
Article

## Abstract

The combinatorial simple principal ideal semigroups generated by two elements were described by L. Megyesi and G. Pollák. The ‘most general’ among them is called the Rédei semigroup. The ‘most special’ combinatorial simple principal ideal semigroup generated by two elements is the bicyclic semigroup. D. B. McAlister determined the compatible semilattice orders on the bicyclic semigroup. Our aim is to study the compatible semilattice orders on the homomorphic images of the Rédei semigroup. We prove that there are four compatible total orders on these semigroups. We show that on the Rédei semigroup, the total orders are the only compatible semilattice orders. Moreover, on each proper homomorphic image of the Rédei semigroup, we give a compatible semilattice order which is not a total order.

## Key words and phrases

semilattice order principal ideal semigroup

20M99 06F05

## References

1. [1]
M. R. Darnel, Theory of Lattice-ordered Groups, Marcel Dekker, Inc., New York, 1995.
2. [2]
L. Fuchs, Partially Ordered Algebraic System, Pergamon Press, London, 1963.Google Scholar
3. [3]
P. A. Grillet, Semigroups: An Introduction to the Structure Theory, Marcel Dekker, Inc., New York, 1995.Google Scholar
4. [4]
J. M. Howie, Fundamentals of Semigroup Theory, The Clarendon Press, Oxford, 1995.
5. [5]
D. B. McAlister, Lattice ordered groups and the structure of inverse semigroups, Notes for course of lectures, Lisbon, 1998.Google Scholar
6. [6]
D. B. McAlister, Compatible orders on the bicyclic semigroup, Comm. Algebra, 27 (1999), 4179–4208.
7. [7]
L. Megyesi and G. Pollák, On simple principal ideal semigroups, Studia Sci. Math. Hungar., 16 (1981), 437–448.
8. [8]
L. Megyesi and G. Pollák, Über die Struktur der Hauptidealhalbgruppen. I, Acta Sci. Math. (Szeged), 29 (1968), 261–270.
9. [9]
L. Rédei, Halbgruppen und Ringe mit Linkseinheiten ohne Linkseinselemente, Acta Math. Acad. Sci. Hungar., 11 (1960), 217–222.