Advertisement

Periodica Mathematica Hungarica

, Volume 55, Issue 1, pp 11–18 | Cite as

On the Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system

  • Ushangi GoginavaEmail author
  • Károly Nagy
Article
  • 28 Downloads

Abstract

The main aim of this paper is to prove that the maximal operator σ 0 k* := sup n σ n,n k ∣ of the Fejér means of double Fourier series with respect to the Kaczmarz system is not bounded from the Hardy space H 1/2 to the space weak-L 1/2.

Key words and phrases

Walsh-Kaczmarz system Fejér means Maximal operator 

Mathematics subject classification number

42C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Gát, On (C, 1) summability of integrable functions with respect to the Walsh-Kaczmarz system, Studia Math., 130 (1998), 135–148.zbMATHGoogle Scholar
  2. [2]
    U. Goginava, Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Acad. Sci. Hungar., 115(4) (2007), 333–340.Google Scholar
  3. [3]
    F. Schipp, W.R. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol-New York, 1990.zbMATHGoogle Scholar
  4. [4]
    F. Schipp, Pointwise convergence of expansions with respect to certain product systems, Anal. Math., 2 (1976), 63–75.Google Scholar
  5. [5]
    P. Simon, On the Cesàro summability with respect to the Walsh-Kaczmarz system, J. Approx. Theory, 106 (2000), 249–261.zbMATHCrossRefGoogle Scholar
  6. [6]
    P. Simon, Cesàro summability with respect to two-parameter Walsh system, Monatsh. Math., 131 (2000), 321–334.CrossRefGoogle Scholar
  7. [7]
    V. A. Skvortsov, On Fourier series with respect to the Walsh-Kaczmarz system, Anal. Math., 7 (1981), 141–150.zbMATHCrossRefGoogle Scholar
  8. [8]
    A. A. Šneider, On series with respect to the Walsh functions with monotone coefficients, Izv. Akad. Nauk SSSR Ser. Math., 12 (1948), 179–192.Google Scholar
  9. [9]
    W. S. Young, On the a.e. convergence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc., 44 (1974), 353–358.zbMATHCrossRefGoogle Scholar
  10. [10]
    F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc., 348 (1996), 2169–2181.zbMATHCrossRefGoogle Scholar
  11. [11]
    F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Springer-Verlang, Berlin, 1994.zbMATHGoogle Scholar
  12. [12]
    F. Weisz, Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.Google Scholar
  13. [13]
    F. Weisz, -summability of Fourier series, Acta Math. Acad. Sci. Hungar., 103(1–2) (2004), 139–176.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mechanics and MathematicsTbilisi State UniversityTbilisiGeorgia
  2. 2.Institute of Mathematics and Computer ScienceCollege of NyíregyházaNyíregyházaHungary

Personalised recommendations