Global Regulatory Review Needed for Cochlear Implants: A Call for FDA Leadership

Abstract

Introduction

Using the United States Food and Drug Administration (FDA) as example, we argue that regulatory agencies worldwide should review their guidance on cochlear implants (CIs).

Methods

This is a position paper, thus the methods are strictly argumentation. Here we give the motivation for our recommendation. The FDA’s original approval of implantation in prelingually deaf children was granted without full benefit of information on language acquisition, on childcaregiver communication, and on the lived experience of being deaf. The CI clinical trials, accordingly, did not address risks of linguistic deprivation, especially when the caregiver’s communication is not fully accessible to the prelingually deaf child. Wide variability in the effectiveness of CIs since initial and updated approval has been indicated but has not led to new guidance. Children need to be exposed frequently and regularly to accessible natural language while their brains are still plastic enough to become fluent in any language. For the youngest infants, who are not yet producing anything that could be called language although they might be producing salient social signals (Goldstein et al. Child Dev 80:636–644, 2009), good comprehension of communication from caregiver to infant is critical to the development of language. Sign languages are accessible natural languages that, because they are visual, allow full immersion for deaf infants, and they supply the necessary support for this comprehension. The main language contributor to health outcomes is this combination of natural visual language and comprehension in communication. Accordingly, in order to prevent possible language deprivation, all prelingually deaf children should be exposed to both sign and spoken languages when their auditory status is detected, with sign language being critical during infancy and early childhood. Additionally, all caregivers should be given support to learn a sign language if it is new to them so that they can comprehend their deaf children’s language expressions fully. However, both languages should be made accessible in their own right, not combined in a simultaneous or total communication approach since speaking one language and signing the other at the same time is problematic.

Results

Again, because this is a position paper, our results are our recommendations. We call for the FDA (and similar agencies in other countries) to review its approval of cochlear implantation in prelingually deaf children who are within the sensitive period for language acquisition. In the meantime, the FDA should require manufacturers to add a highlighted warning to the effect that results with CI vary widely and CIs should not be relied upon to provide adequate auditory input for complete language development in all deaf children. Recent best information on users’ experience with CIs (including abandonment) should be clearly provided so that informed decisions can be made. The FDA should require manufacturers’ guidance and information materials to include encouragement to parents of deaf children to offer auditory input of a spoken language and visual input of a sign language and to have their child followed closely from birth by developmental specialists in language and cognition. In this way parents can align with providers to prioritize cognitive development and language access in both audio-vocal and visuo-gestural modalities.

Discussion

The arguments and recommendations in this paper are discussed at length as they come up.

This is a preview of subscription content, access via your institution.

References

  1. Advanced Bionics. (2010). Advanced Bionics announces voluntary recall of the HiRes 90K Cochlear Implant. https://www.businesswire.com/news/home/20101123006909/en/Advanced-Bionics-Announces-Voluntary-Recall-HiRes-90K. Accessed May 28, 2019.

  2. Alzhrani, F., Lenarz, T., & Teschner, M. (2016). Facial palsy following cochlear implantation. European Archives of Oto-Rhino-Laryngology, 273(12), 4199–4207.

    Google Scholar 

  3. American Academy of Audiology. (2019). Cochlear implants in children. https://www.audiology.org/publications-resources/document-library/cochlear-implants-children. Accessed May 8, 2019.

  4. Amraei, K., Amirsalari, S., & Ajallouiyan, M. (2017). Comparison of intelligence quotients of first- and second-generation deaf children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 92, 167–170.

    CAS  Google Scholar 

  5. Anderson, D., & Reilly, J. (2002). The MacArthur communicative development inventory: Normative data for American Sign Language. Journal of Deaf Studies and Deaf Education, 7(2), 83–106.

    Google Scholar 

  6. Anmyr, L., Olsson, M., Larson, K., & Freijd, A. (2011). Children with hearing impairment–living with cochlear implants or hearing aids. International Journal of Pediatric Otorhinolaryngology, 75(6), 844–849.

    Google Scholar 

  7. Antia, S. (2015). Enhancing academic and social outcomes: Balancing individual, family, and school assets and risks for deaf and hard-of-hearing students in general education. In H. Knoors & M. Marschark (Eds.), Educating deaf learners: Creating a global evidence base (pp. 527–546). Oxford: Oxford University Press.

    Google Scholar 

  8. Balkany, T. J., Connell, S. S., Hodges, A. V., Payne, S. L., Telischi, F. F., Eshraghi, A. A., et al. (2006). Conservation of residual acoustic hearing after cochlear implantation. Otology & Neurotology, 27(8), 1083–1088.

    Google Scholar 

  9. Bayer Healthcare. (2018). Patient-doctor discussion checklist. Acceptance of risk and informed decision acknowledgement. https://labeling.bayerhealthcare.com/html/products/pi/essure_pib_en.pdf. Accessed May 8, 2019.

  10. Beadle, E. A., McKinley, D. J., Nikolopoulos, T. P., Brough, J., O'Donoghue, G. M., & Archbold, S. M. (2005). Long-term functional outcomes and academic-occupational status in implanted children after 10 to 14 years of cochlear implant use. Otology & Neurotology, 26(6), 1152–1160. For quotes, see page 1152.

  11. Berrettini, S., Forli, F., & Passetti, S. (2008). Preservation of residual hearing following cochlear implantation: Comparison between three surgical techniques. The Journal of Laryngology & Otology, 122(3), 246–252.

    CAS  Google Scholar 

  12. Berrettini, S., Vito, D. A., Bruschini, L., Passetti, S., & Forli, F. (2011). Facial nerve stimulation after cochlear implantation: our experience. Acta Otorhinolaryngologica Italica, 31(1), 11–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bialystok, E. (2011). Reshaping the mind: The benefits of bilingualism. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 65(4), 229–235.

    Google Scholar 

  14. Birman, C. S., Elliott, E. J., & Gibson, W. P. (2012). Pediatric cochlear implants: Additional disabilities prevalence, risk factors, and effect on language outcomes. Otology & Neurotology, 33(8), 1347–1352.

    Google Scholar 

  15. Black, J., Hickson, L., Black, B., & Perry, C. (2011). Prognostic indicators in paediatric cochlear implant surgery: A systematic literature review. Cochlear Implants International, 12(2), 67–93.

    Google Scholar 

  16. Blanchard, M., Thierry, B., Glynn, F., De Lamaze, A., Garabédian, E. N., & Loundon, N. (2015). Cochlear implant failure and revision surgery in pediatric population. Annals of Otology, Rhinology & Laryngology, 124(3), 227–231.

    Google Scholar 

  17. Bloom, L. (1993). The transition from infancy to language: Acquiring the power of expression. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  18. Bloom, L, Tinker, E., & Scholnick, E. (2001). The intentionality model and language acquisition: Engagement, effort, and the essential tension. Monographs of the Society for Research in Child Development, 66(4), 1–101. Retrieved 10 July 2020, from www.jstor.org/stable/3181577.

  19. Blume, S. S. (2010). The artificial ear: Cochlear implants and the culture of deafness. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  20. Bond, M., Elston, J., Mealing, S., Anderson, R., Weiner, G., Taylor, R. S., et al. (2009). Effectiveness of multi-channel unilateral cochlear implants for profoundly deaf children: A systematic review. Clinical Otolaryngology, 34(3), 199–211.

    CAS  Google Scholar 

  21. Boons, T., Brokx, J. P., Dhooge, I., Frijns, J. H., Peeraer, L., Vermeulen, A., et al. (2012). Predictors of spoken language development following pediatric cochlear implantation. Ear and Hearing, 33(5), 617–639.

    Google Scholar 

  22. Braswell, J., & Rine, R. M. (2006). Evidence that vestibular hypofunction affects reading acuity in children. International Journal of Pediatric Otorhinolaryngology, 70, 1957–1965.

    Google Scholar 

  23. Broomfield, S. J., Bruce, I. A., Henderson, L., Ramsden, R. T., & Green, K. M. (2012). Cochlear implantation in children with Jervell and Lange-Nielsen syndrome–a cautionary tale. Cochlear Implants International, 13(3), 168–172.

    Google Scholar 

  24. Campbell, R., MacSweeney, M., & Waters, D. (2008). Sign language and the brain: A review. Journal of Deaf Studies and Deaf Education, 13, 3–20.

    Google Scholar 

  25. Campbell, R., MacSweeney, M., & Woll, B. (2014). Cochlear implantation (CI) for prelingual deafness: The relevance of studies of brain organization and the role of first language acquisition in considering outcome success. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2014.00834.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Capek, C. M., Woll, B., MacSweeney, M., Waters, D., McGuire, P. K., David, A. S., et al. (2010). Superior temporal activation as a function of linguistic knowledge: Insights from deaf native signers who speechread. Brain and Language, 112(2), 129–134.

    PubMed  PubMed Central  Google Scholar 

  27. Chilosi, A. M., Comparini, A., Scusa, M. F., Berrettini, S., Forli, F., Battini, R., et al. (2010). Neurodevelopmental disorders in children with severe to profound sensorineural hearing loss: A clinical study. Developmental Medicine & Child Neurology, 52(9), 856–862.

    Google Scholar 

  28. Ching, T. Y., Zhang, V. W., Flynn, C., Burns, L., Button, L., Hou, S., et al. (2018). Factors influencing speech perception in noise for 5-year-old children using hearing aids or cochlear implants. International Journal of Audiology. https://doi.org/10.1080/14992027.2017.1346307.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ciorba, A., Bovo, R., Trevisi, P., Rosignoli, M., Aimoni, C., Castiglione, A., et al. (2012). Postoperative complications in cochlear implants: A retrospective analysis of 438 consecutive cases. European Archives of Oto-rhino-laryngology, 269(6), 1599–1603.

    CAS  Google Scholar 

  30. Çizmeci, H., & Çiprut, A. (2018). Evaluation of gap filling skills and reading mistakes of cochlear implanted and normally hearing students. International Journal of Pediatric Otorhinolaryngology, 109, 27–30.

    Google Scholar 

  31. Clark, G. M. (1995). Cochlear implants: Historical perspectives. In G. Plant & K. Spens (Eds.), Profound deafness and speech communication (pp. 165–218). London: Whurr.

    Google Scholar 

  32. Clark, M. D., Hauser, P. C., Miller, P., Kargin, T., Rathmann, C., Guldenoglu, B., et al. (2016). The importance of early sign language acquisition for deaf readers. Reading & Writing Quarterly, 32(2), 127–151.

    Google Scholar 

  33. Cochlear® (2011). Voluntary recall notification for Nucleus CI500 Cochlear Implant range. Sound Connection 2(2). https://www.cochlear.com/uk/for-professionals/sound-connection/voluntary-recall-notification-for-nucleus-ci500-cochlear-implant-range. Accessed May 13, 2019.

  34. Cochlear Implant HELP. (n.d.). Recalls. https://cochlearimplanthelp.com/journey/choosing-a-cochlear-implant/cochlear-implant-problems/recalls/. Accessed May 13, 2019.

  35. Contrera, K. J., Choi, J. S., Blake, C. R., Betz, J. F., Niparko, J. K., & Lin, F. R. (2014). Rates of long-term cochlear implant use in children. Otology & Neurotology, 35(3), 426–430.

    Google Scholar 

  36. Corina, D. P., Blau, S., LaMarr, T., Lawyer, L. A., & Coffey-Corina, S. (2017). Auditory and visual electrophysiology of deaf children with cochlear implants: Implications for cross-modal plasticity. Frontiers in Psychology, 8, 59. https://doi.org/10.3389/fpsyg.2017.00059/full.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cortez, N. (2014). Regulating disruptive innovation. Berkeley Technology Law Journal, 29, 175–228.

    Google Scholar 

  38. Cruz, I., Quittner, A. L., Marker, C., & DesJardin, J. L. (2013). Identification of effective strategies to promote language in deaf children with cochlear implants. Child Development, 84(2), 543–559.

    PubMed  PubMed Central  Google Scholar 

  39. Cunningham, M., Cox, E. O., & Committee on Practice, and Ambulatory Medicine. (2003). Hearing assessment in infants and children: recommendations beyond neonatal screening. Pediatrics, 111(2), 436–440.

    PubMed  PubMed Central  Google Scholar 

  40. Cupples, L., Ching, T. Y., Button, L., Seeto, M., Zhang, V., Whitfield, J., et al. (2018). Spoken language and everyday functioning in 5-year-old children using hearing aids or cochlear implants. International Journal of Audiology. https://doi.org/10.1080/14992027.2017.1370140.

    Article  Google Scholar 

  41. Daneshi, A., Ajalloueyan, M., Ghasemi, M. M., Hashemi, B. S., Emamjome, H., Farhadi, M., et al. (2015). Complications in a series of 4400 paediatric cochlear implantation. International Journal of Pediatric Otorhinolaryngology, 79(9), 1401–1403.

    Google Scholar 

  42. Davidson, K., Lillo-Martin, D., & Chen-Pichler, D. (2014). Spoken English language development in native signing children with cochlear implants. Journal of Deaf Studies and Deaf Education, 19(2), 238–250.

    PubMed  PubMed Central  Google Scholar 

  43. Davidson, L. S., Geers, A. E., Blamey, P. J., Tobey, E. A., & Brenner, C. A. (2011). Factors contributing to speech perception scores in long-term pediatric cochlear implant users. Ear and Hearing. https://doi.org/10.1097/AUD.0b013e3181ffdb8b.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Department of Justice. (2010). United States settles false claims act allegations with Cochlear Americas for $880,000. https://www.justice.gov/opa/pr/united-states-settles-false-claims-act-allegations-cochlear-americas-880000. Accessed May 28, 2016.

  45. Dhruva, S. S., & Redberg, R. F. (2013). FDA regulation of cardiovascular devices and opportunities for improvement. Journal of Interventional Cardiac Electrophysiology, 36(2), 99–105.

    Google Scholar 

  46. Dhruva, S. S., Bero, L. A., & Redberg, R. F. (2009). Strength of study evidence examined by the FDA in premarket approval of cardiovascular devices. JAMA, 302, 2679–2685. [Erratum, JAMA 2010;303:422.]

  47. Diaz, L., Labrell, F., Le Normand, M. T., Guinchat, V., & Dellatolas, G. (2019). School achievement of deaf children ten years after cochlear implantation. Neuropsychiatrie de l'Enfance et de l'Adolescence, 67(1), 50–57.

    Google Scholar 

  48. Donaldson, K. (2011). History of pediatric cochlear implantation. Cochlear Implant Online. https://cochlearimplantonline.com/site/history-of-pediatric-cochlear-implantation-1/. Accessed May 28, 2019.

  49. Drury, S. S., Theall, K., Gleason, M. M., Smyke, A. T., De Vivo, I., Wong, J. Y. Y., et al. (2011). Telomere length and early severe social deprivation: Linking early adversity and cellular aging. Molecular Psychiatry, 17(7), 719–727.

    PubMed  PubMed Central  Google Scholar 

  50. Duchesne, L., Sutton, A., & Bergeron, F. (2009). Language achievement in children who received cochlear implants between 1 and 2 years of age: Group trends and individual patterns. Journal of Deaf Studies and Deaf Education, 14(4), 465–485.

    Google Scholar 

  51. Emmorey, K. (2002). Language, cognition, and the brain: Insights from sign language research. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  52. Emmorey, K., & McCullough, S. (2009). The bimodal bilingual brain: Effects of sign language experience. Brain and Language, 109(2–3), 124–132.

    Google Scholar 

  53. Farinetti, A., Gharbia, D. B., Mancini, J., Roman, S., Nicollas, R., & Triglia, J. M. (2014). Cochlear implant complications in 403 patients: Comparative study of adults and children and review of the literature. European Annals of Otorhinolaryngology, Head and Neck Diseases, 131(3), 177–182.

    CAS  Google Scholar 

  54. Faris, O. (2020). Clinical trials for medical devices: FDA and the IDE process. https://www.fda.gov/media/87603/download. Accessed January 10, 2020.

  55. FDA. (1989). Labeling: Regulatory requirements for medical devices. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/labeling-regulatory-requirements-medical-devices-fda-89-4203. Accessed May 9, 2019.

  56. FDA. (2004). Advanced Bionics conducts voluntary recall of cochlear implants; FDA not recommending removal of implants already in place. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2004/ucm108358.htm. Accessed May 28, 2016.

  57. FDA. (2008). General controls for medical devices. https://www.fda.gov/medical-devices/regulatory-controls/general-controls-medical-devices. Accessed May 9, 2019.

  58. FDA. (2010). Class 2 device recall Advanced Bionics HiRes 90K cochlear implant device. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm?id=95925. Accessed May 13, 2019.

  59. FDA. (2012). A guide to drug safety terms at FDA. https://www.fda.gov/media/74382/download. Accessed May 8, 2019.

  60. FDA. (2016a) FDA takes additional action to better understand safety of Essure, inform patients of potential risks. https://www.fda.gov/news-events/press-announcements/fda-takes-additional-action-better-understand-safety-essure-inform-patients-potential-risks. Accessed May 8, 2019.

  61. FDA. (2016b) Labeling for permanent hysteroscopically-placed tubal implants intended for sterilization. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/labeling-permanent-hysteroscopically-placed-tubal-implants-intended-sterilization. Accessed May 8, 2019.

  62. FDA. (2017a). Deciding when to submit a 510(k) for a software change to an existing device. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/deciding-when-submit-510k-software-change-existing-device. Accessed May 8, 2019.

  63. FDA. (2017b.) Is a new 510(k) required for a modification to the device? https://www.fda.gov/medical-devices/premarket-notification-510k/new-510k-required-modification-device. Accessed May 8, 2019.

  64. FDA. (2018a). FDA-approved cochlear implants. https://www.fda.gov/medical-devices/cochlear-implants/fda-approved-cochlear-implants

  65. FDA. (2018b). Premarket notification 510(k). https://www.fda.gov/medical-devices/premarket-submissions/premarket-notification-510k. Accessed January 15, 2020.

  66. FDA. (2018c). Benefits and risks of cochlear implants. https://www.fda.gov/medicaldevices/productsandmedicalprocedures/implantsandprosthetics/cochlearimplants/ucm062843.htm#e. Accessed September 3, 2018.

  67. FDA. (2018d). Statement from FDA Commissioner Scott Gottlieb, M.D. and Jeff Shuren, M.D., Director of the Center for Devices and Radiological Health, on transformative new steps to modernize FDA’s 510(k) program to advance the review of the safety and effectiveness of medical devices. https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-jeff-shuren-md-director-center-devices-and Accessed May 8, 2019.

  68. FDA. (2019a). General information about hip implants. https://www.fda.gov/medical-devices/metal-metal-hip-implants/general-information-about-hip-implants. Accessed January 10, 2020.

  69. FDA. (2019b). FDA adverse event reporting system (FAERS) public dashboard. https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard. Accessed January 13, 2020.

  70. Fink, N. E., Wang, N.-Y., Visaya, J., Niparko, J. K., Quittner, A. L., Eisenberg, L. S., et al. (2007). Childhood development after cochlear implantation (CDaCI) study: Design and baseline characteristics. Cochlear Implants International, 8(2), 92–116.

    Google Scholar 

  71. Fitzpatrick, E. M., Olds, J., Gaboury, I., McCrae, R., Schramm, D., & Durieux-Smith, A. (2012). Comparison of outcomes in children with hearing aids and cochlear implants. Cochlear Implants International, 13(1), 5–15.

    Google Scholar 

  72. Frank, C., Himmelstein, D. U., Woolhandler, S., Bor, D. H., Wolfe, S. M., Heymann, O., et al. (2014). Era of faster FDA drug approval has also seen increased black-box warnings and market withdrawals. Health Affairs, 33(8), 1453–1459.

    Google Scholar 

  73. Friederici, A. D. (2017). Neurobiology of syntax as the core of human language. Biolinguistics, 11. https://biolinguistics.eu/index.php/biolinguistics/article/view/514

  74. Garber, A. M. (2010). Modernizing device regulation. New England Journal of Medicine, 362(13), 1161–1163.

    CAS  Google Scholar 

  75. Geers, A. E., & Sedey, A. L. (2011). Language and verbal reasoning skills in adolescents with 10 or more years of cochlear implant experience. Ear and Hearing. https://doi.org/10.1097/AUD.0b013e3181fa41dc.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Giezen, M. (2011). Speech and sign perception in deaf children with cochlear implants. Utrecht: LOT.

    Google Scholar 

  77. Giraud, A.-L., & Lee, H.-J. (2007). Predicting cochlear implant outcome from brain organization in the deaf. Restorative Neurology and Neuroscience, 25(3–4), 381–390.

    Google Scholar 

  78. Goldstein, M. H., Schwade, J. A., & Bornstein, M. H. (2009). The value of vocalizing: Five-month-old infants associate their own noncry vocalizations with responses from caregivers. Child Development, 80(3), 636–644.

    PubMed  PubMed Central  Google Scholar 

  79. Guarnaccia, M. C., D'Adamo, C., Artioli, F. L., & Genovese, E. (2018). Effects of speech recognition in noise in children with cochlear implantation or hearing aids, that use FM or wireless system. Journal of Hearing Science, 8(2), 361–362.

    Google Scholar 

  80. Gunn, C. M., & Paasche-Orlow, M. K. (2019). The FDA-approved essure device counseling order fails to promote patient empowerment. HLRP: Health Literacy Research and Practice. https://doi.org/10.3928/24748307-20190306-01.

    Book  Google Scholar 

  81. Hackett, A. (2014). Zigging and zooming all over the place: Young children’s meaning making and movement in the museum. Journal of Early Childhood Literacy, 14(1), 5–27.

    Google Scholar 

  82. Hall, W. C. (2017). What you don’t know can hurt you: The risk of language deprivation by impairing sign language development in deaf children. Maternal and Child Health Journal, 21(5), 961–965.

    PubMed  PubMed Central  Google Scholar 

  83. Hall, M. L., Hall, W. C., & Caselli, N. K. (2019). Deaf children need language, not (just) speech. First Language. https://doi.org/10.1177/0142723719834102.

    Article  Google Scholar 

  84. Harris, M., & Terlektsi, E. (2010). Reading and spelling abilities of deaf adolescents with cochlear implants and hearing aids. Journal of Deaf Studies and Deaf Education, 16(1), 24–34.

    Google Scholar 

  85. Hassanzadeh, S. (2012). Outcomes of cochlear implantation in deaf children of deaf parents: Comparative study. The Journal of Laryngology & Otology, 126(10), 989–994.

    CAS  Google Scholar 

  86. Hedrick, M., Thornton, K. E., Yeager, K., Plyler, P., Johnstone, P., Reilly, K., et al. (2019). The use of static and dynamic cues for vowel identification by children wearing hearing aids or cochlear implants. Ear and Hearing. https://doi.org/10.1097/AUD.0000000000000735.

    Article  Google Scholar 

  87. Hintermair, M. (2015). The role of language in deaf and hard-of-hearing children’s social-emotional development. In M. Marschark & P. E. Spencer (Eds.), The Oxford handbook of deaf studies in language (pp. 62–78). Oxford: Oxford University Press.

    Google Scholar 

  88. Hrastinski, I., & Wilbur, R. B. (2016). Academic achievement of deaf and hard-of-hearing students in an ASL/English bilingual program. Journal of Deaf Studies and Deaf Education, 21(2), 156–170.

    PubMed  PubMed Central  Google Scholar 

  89. Hsiao, W. C. (2008). When incentives and professionalism collide. Health Affairs, 27(4), 949–951.

    Google Scholar 

  90. Hsieh, H. S., Wu, C. M., Zhuo, M. Y., Yang, C. H., & Hwang, C. F. (2015). Intraoperative facial nerve monitoring during cochlear implant surgery: An observational study. Medicine, 94(4), e456. https://doi.org/10.1097/MD.0000000000000456.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Humphries, T., Kushalnagar, P., Mathur, G., Napoli, D. J., Padden, C., Rathmann, C., et al. (2017). Discourses of prejudice in the professions: The case of sign languages. Journal of Medical Ethics, 43(9), 648–652.

    PubMed  PubMed Central  Google Scholar 

  92. Humphries, T., Kushalnagar, P., Mathur, G., Napoli, D. J., Rathmann, C., & Smith, S. (2019). Support for parents of deaf children: Common questions and informed, evidence-based answers. International Journal of Pediatric Otorhinolaryngology, 118, 134–142.

    PubMed  PubMed Central  Google Scholar 

  93. Hwang, T. J., Kesselheim, A. S., & Bourgeois, F. T. (2014). Postmarketing trials and pediatric device approvals. Pediatrics, 133(5), e1197–e1202.

    PubMed  PubMed Central  Google Scholar 

  94. Hyde, M., Punch, R., & Grimbeek, P. (2011). Factors predicting functional outcomes of cochlear implants in children. Cochlear Implants International, 12(2), 94–104.

    Google Scholar 

  95. Hyde, M., Zevenbergen, R., & Power, D. (2003). Deaf and hard of hearing students' performance on arithmetic word problems. American Annals of the Deaf, 148(1), 56–64.

    Google Scholar 

  96. Inoue, A., Iwasaki, S., Ushio, M., Chihara, Y., Fujimoto, C., Egami, N., et al. (2013). Effect of vestibular dysfunction on the development of gross motor function in children with profound hearing loss. Audiology & Neurotology, 18(3), 143–151.

    Google Scholar 

  97. Jacot, E., Van Den Abbeele, T., Debre, H. R., & Wiener-Vacher, S. R. (2009). Vestibular impairments pre- and post-cochlear implant in children. International Journal of Pediatric Otorhinolaryngology, 73(2), 209–217.

    Google Scholar 

  98. Janky, K., & Givens, D. (2015). Vestibular, visual acuity and balance outcomes in children with cochlear implants: A preliminary report. Ear and Hearing, 36(6), e364–e372.

    PubMed  PubMed Central  Google Scholar 

  99. Joint Committee on Infant Hearing. (2000). Year 2000 position statement: Principles and guidelines for early hearing detection and intervention programs. American Journal of Audiology, 9(1), 9–29.

    Google Scholar 

  100. Joint Committee on Infant Hearing. (2007). Year 2007 position statement: Principles and guidelines for early hearing detection and intervention programs. Pediatrics, 120(4), 898–921.

    Google Scholar 

  101. Karch, A. M. (2006). The gray areas of black box warnings: Who is responsible for heeding them? The American Journal of Nursing, 106(6), 77–78.

    Google Scholar 

  102. Khater, A., & El-Anwar, M. W. (2017). Methods of hearing preservation during cochlear implantation. International Archives of Otorhinolaryngology, 21(03), 297–301.

    Google Scholar 

  103. Klima, E., & Bellugi, U. (1979). The signs of language. Cambridge, MA: Harvard University Press.

    Google Scholar 

  104. Kovelman, I., Shalinsky, M. H., Berens, M. S., & Petitto, L. A. (2014). Words in the bilingual brain: An fNIRS brain imaging investigation of lexical processing in sign-speech bimodal bilinguals. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2014.00606.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kritzer, K. L. (2009). Barely started and already left behind: A descriptive analysis of the mathematics ability demonstrated by young deaf children. Journal of Deaf Studies and Deaf Education, 14(4), 409–421.

    Google Scholar 

  106. Kushalnagar, P., Hannay, H. J., & Hernandez, A. E. (2010). Bilingualism and attention: a study of balanced and unbalanced bilingual deaf users of American Sign Language and English. Journal of Deaf Studies and Deaf Education, 15(3), 263–273.

    PubMed  PubMed Central  Google Scholar 

  107. Kushalnagar, P., Ryan, C., Paludneviciene, R., Spellun, A., & Gulati, S. (2020). Adverse childhood communication experiences associated with an increased risk of chronic diseases in adults who are deaf. American Journal of Preventive Medicine. https://doi.org/10.1016/j.amepre.2020.04.016.

    Article  Google Scholar 

  108. Kushalnagar, P., Topolski, T. D., Schick, B., Edwards, T. C., Skalicky, A. M., & Patrick, D. L. (2011). Mode of communication, perceived level of understanding, and perceived quality of life in youth who are deaf or hard of hearing. Journal of Deaf Studies and Deaf Education, 16(4), 512–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Leigh, G., & Marschark, M. (2016). Recognizing diversity in deaf education: From Paris to Athens with a diversion to Milan. In M. Marschark, V. Lampropoulou, & E. K. Skordilis (Eds.), Diversity in deaf education (pp. 1–20). Oxford: Oxford University Press.

    Google Scholar 

  110. Levine, D., Strother-Garcia, K., Golinkoff, R. M., & Hirsh-Pasek, K. (2016). Language development in the first year of life: What deaf children might be missing before cochlear implantation. Otology & Neurotology, 37(2), e56–e62.

    Google Scholar 

  111. Licameli, G., Zhou, G., & Kenna, M. A. (2009). Disturbance of vestibular function attributable to cochlear implantation in children. Laryngoscope, 119(4), 740–745.

    Google Scholar 

  112. Loundon, N., Blanchard, M., Roger, G., Denoyelle, F., & Garabedian, E. N. (2010). Medical and surgical complications in pediatric cochlear implantation. Archives of Otolaryngology-Head & Neck Surgery, 136(1), 12–15.

    Google Scholar 

  113. Lund, E. (2015). Vocabulary knowledge of children with cochlear implants: A meta-analysis. Journal of Deaf Studies and Deaf Education, 21(2), 107–121.

    PubMed  PubMed Central  Google Scholar 

  114. Lyness, C. R., Woll, B., Campbell, R., & Cardin, V. (2013). How does visual language affect crossmodal plasticity and cochlear implant success? Neuroscience & Biobehavioral Reviews, 37(10 pt 2), 2621–2630.

    CAS  Google Scholar 

  115. Maes, L., De Kegel, A., Van Waelvelde, H., & Dhooge, I. (2014). Association between vestibular function and motor performance in hearing-impaired children. Otology & Neurotology, 35(10), e343–e347.

    Google Scholar 

  116. Marnane, V., & Ching, T. Y. (2015). Hearing aid and cochlear implant use in children with hearing loss at three years of age: Predictors of use and predictors of changes in use. International Journal of Audiology, 54(8), 544–551.

    PubMed  PubMed Central  Google Scholar 

  117. Marschark, M., & Lee, C.-M. (2014). Navigating two languages in the classroom. In M. Marschark, G. Tang, & H. Knoors (Eds.), Bilingualism and bilingual deaf education (pp. 213–241). New York: Oxford University Press.

    Google Scholar 

  118. Martin, D., Bat-Chava, Y., Lalwani, A., & Waltzman, S. B. (2010). Peer relationships of deaf children with cochlear implants: Predictors of peer entry and peer interaction success. Journal of Deaf Studies and Deaf Education, 16(1), 108–120.

    Google Scholar 

  119. Martin, W., Jelsma, J., & Rogers, C. (2012). Motor proficiency and dynamic visual acuity in children with bilateral sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 76(10), 1520–1525.

    Google Scholar 

  120. Mathews, E. S. (2011). ‘No sign language if you want to get him talking’: Power, transgression/resistance, and discourses of d/Deafness in the Republic of Ireland. Population, Space and Place, 17(4), 361–376.

    Google Scholar 

  121. Mauldin, L. (2014). Precarious plasticity: Neuropolitics, cochlear implants, and the redefinition of deafness. Science, Technology, & Human Values, 39(1), 130–153.

    Google Scholar 

  122. Mauldin, L. (2016). Made to hear: Cochlear implants and raising deaf children. Minneapolis: University of Minnesota Press.

    Google Scholar 

  123. Mayberry, R. I. (2010). Early language acquisition and adult language ability: What sign language reveals about the critical period for language. In M. Marschark & P. E. Spencer (Eds.), The Oxford handbook of deaf studies, language, and education (Vol. 2, pp. 281–291). New York: Oxford University Press.

    Google Scholar 

  124. McJunkin, J., & Jeyakumar, A. (2010). Complications in pediatric cochlear implants. American Journal of Otolaryngology, 31(2), 110–113.

    Google Scholar 

  125. McKinney, S. (2017). Cochlear implantation in children under 12 months of age. Current Opinion in Otolaryngology & Head and Neck Surgery, 25(5), 400–404.

    Google Scholar 

  126. Meier, R., Cormier, K., & Quinto-Pozos, D. (Eds.). (2002). Modality and structure in signed and spoken languages. Cambridge: Cambridge University Press.

    Google Scholar 

  127. Meristo, M., Strid, K., & Hjelmquist, E. (2016). Early conversational environment enables spontaneous belief attribution in deaf children. Cognition, 157, 139–145.

    Google Scholar 

  128. Meshik, X., Holden, T. A., Chole, R. A., & Hullar, T. E. (2010). Optimal cochlear implant insertion vectors. Otology Neurotology, 31(1), 58–63.

    PubMed  PubMed Central  Google Scholar 

  129. Miranda, P. C., Sampaio, A. L. L., Lopes, R. A. F., Ramos Venosa, A., & Oliveira, C. A. C. P. D. (2014). Hearing preservation in cochlear implant surgery. International Journal of Otolaryngology. https://doi.org/10.1155/2014/468515.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Montero, D. (2018). Kickback: Exposing the Global Corporate Bribery Network. New York: Viking.

    Google Scholar 

  131. Most, T. (2007). Speech intelligibility, loneliness, and sense of coherence among deaf and hard-of-hearing children in individual inclusion and group inclusion. Journal of Deaf Studies and Deaf Education, 12(4), 495–503.

    Google Scholar 

  132. Most, T., & Peled, M. (2007). Perception of suprasegmental features of speech by children with cochlear implants and children with hearing aids. Journal of Deaf Studies and Deaf Education, 12(3), 350–361.

    Google Scholar 

  133. Most, T., Shina-August, E., & Meilijson, S. (2010). Pragmatic abilities of children with hearing loss using cochlear implants or hearing aids compared to hearing children. Journal of Deaf Studies and Deaf Education, 15(4), 422–437.

    Google Scholar 

  134. Mowry, S. E., Woodson, E., & Gantz, B. J. (2012). New frontiers in cochlear implantation: Acoustic plus electric hearing, hearing preservation, and more. Otolaryngologic Clinics of North America, 45(1), 187–203.

    Google Scholar 

  135. Muse, C., Harrison, J., Yoshinaga-Itano, C., Grimes, A., Brookhouser, P. E., Epstein, S., et al. (2013). Supplement to the JCIH 2007 position statement: Principles and guidelines for early intervention after confirmation that a child is deaf or hard of hearing. Pediatrics, 131(4), e1324–e1349.

    Google Scholar 

  136. NIDCD (National Institute on Deafness and Other Communication Disorders). (2014). Science capsule—Cochlear implants. https://www.nidcd.nih.gov/about/strategic-plan/2012–2016/science-capsule-cochlear-implants. Accessed August 15, 2018.

  137. Niparko, J. K., Tobey, E. A., Thal, D. J., Eisenberg, L. S., Wang, N. Y., Quittner, A. L., et al. (2010). Spoken language development in children following cochlear implantation. JAMA, 303(15), 1498–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nittrouer, S., & Caldwell-Tarr, A. (2016). Language and literacy skills in children with cochlear implants: Past and present findings. In N. Young & K. Kirk (Eds.), Pediatric cochlear implantation (pp. 177–197). New York: Springer.

    Google Scholar 

  139. O’Reilly, R., Mangiardi, A., & Bunnell, T. (2008). Cochlear implants. In D. DeLuca, I. W. Leigh, K. A. Lindgren, & D. J. Napoli (Eds.), Access: Multiple avenues for deaf people (pp. 38–74). Washington: Gallaudet University Press.

    Google Scholar 

  140. Pakaluk, E., & Neville, H. (2010). Biological bases of language development. In R. Tremblay R et al. (Eds.), Encyclopedia of early childhood development (pp. 1–7). Center of Excellence for Early Child Development. https://www.child-encyclopedia.com/documents/Pakulak-NevilleANGxp.pdf. Accessed May 12, 2016.

  141. Paludetti, G., Conti, G., Di Nardo, W., De Corso, E., Rolesi, R., Picciotti, P. M., et al. (2012). Infant hearing loss: From diagnosis to therapy Official Report of XXI Conference of Italian Society of Pediatric Otorhinolaryngology. Acta Otorhinolaryngologica Italica, 32(6), 347–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Percy-Smith, L., Hallstrøm, M., Josvassen, J. L., Mikkelsen, J. H., Nissen, L., Dieleman, E., et al. (2018). Differences and similarities in early vocabulary development between children with hearing aids and children with cochlear implant enrolled in 3-year auditory verbal intervention. International Journal of Pediatric Otorhinolaryngology, 108, 67–72.

    Google Scholar 

  143. Pereira, A. M., & Melo, T. M. D. (2014). Repair issues associated with cochlear implants external components: The influence of age and time of use. Revista CEFAC, 16(5), 1419–1425.

    Google Scholar 

  144. Peterson, N. R., Pisoni, D. B., & Miyamoto, R. T. (2010). Cochlear implants and spoken language processing abilities: Review and assessment of the literature. Restorative Neurology & Neuroscience, 28(2), 237–250.

    Google Scholar 

  145. Petitto, L. A., Berens, M. S., Kovelman, I., Dubins, M. H., Jasinska, K., & Shalinsky, M. (2012). The “Perceptual Wedge Hypothesis” as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imaging. Brain and Language, 121(2), 130–143.

    CAS  Google Scholar 

  146. Pikov, V. (2015). Global market for implanted neuroprostheses. In K. Kilgore (Ed.), Implantable neuroprostheses for restoring function (pp. 383–394). New York: Woodhead Publishing.

    Google Scholar 

  147. Pisoni, D. B., & Cleary, M. (2003). Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear and Hearing, 24(1 Suppl), 106S–S120.

    PubMed  PubMed Central  Google Scholar 

  148. Pisoni, D. B., Conway, C. M., Kronenberger, W. G., Horn, D. L., Karpicke, J., & Henning, S. C. (2008). Efficacy and effectiveness of cochlear implants in deaf children. In M. Marsharck & P. C. Hauser (Eds.), Deaf cognition: Foundations and outcomes (pp. 52–101). Oxford: Oxford University Press.

    Google Scholar 

  149. Psillas, G., Pavlidou, A., Lefkidis, N., Vital, I., Markou, K., Triaridis, S., et al. (2014). Vestibular evoked myogenic potentials in children after cochlear implantation. Auris, Nasus, Larynx, 41(5), 432–435.

    Google Scholar 

  150. Rabin, R. L., & Picard, A. J. (2019). Reassessing the regulation of high-risk medical device cases. Stanford Public Law Working Paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3383687. Accessed January 14, 2020.

  151. Rah, Y. C., Yoon, Y.-S., Chang, M. Y., Lee, J. Y., Suh, M.-W., Lee, J. H., et al. (2016). Facial nerve stimulation in the narrow bony cochlear nerve canal after cochlear implantation. The Laryngoscope, 126(6), 1433–1439.

    Google Scholar 

  152. Rice, S. (2016). What Essure’s ‘black box’ could mean for clinicians. Modern Healthcare, March 02. https://www.modernhealthcare.com/article/20160302/NEWS/160309995/what-essure-s-black-box-could-mean-for-clinicians. Accessed May 9, 2019.

  153. Riggs, K. R., & Segal, J. B. (2016). What is the rationale for preoperative medical evaluations? A closer look at surgical risk and common terminology. British Journal of Anaesthesia, 117(6), 681–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Rinaldi, P., & Caselli, M. C. (2014). Language development in a bimodal bilingual child with cochlear implant: A longitudinal study. Bilingualism: Language and Cognition, 17(4), 798–809.

    Google Scholar 

  155. Rinaldi, P., Caselli, M. C., Onofrio, D., & Volterra, V. (2014). Language acquisition by bilingual deaf preschoolers: Theoretical, methodological issues and empirical data. In M. Marschark, G. Tang, & H. Knoors (Eds.), Bilingualism and bilingual deaf education (pp. 85–116). Oxford: Oxford University Press.

    Google Scholar 

  156. Rine, R. M., Braswell, J., Fisher, D., Joyce, K., Kalar, K., & Shaffer, M. (2004). Improvement of motor development and postural control following intervention in children with sensorineural hearing loss and vestibular impairment. International Journal of Pediatric Otorhinolaryngology, 68(9), 1141–1148.

    Google Scholar 

  157. Roche, J. P., & Hansen, M. R. (2015). On the horizon: Cochlear implant technology. Otolaryngologic Clinics of North America, 48(6), 1097–1116.

    PubMed  PubMed Central  Google Scholar 

  158. Rönnberg, J. (2003). Working memory, neuroscience, and language: Evidence from deaf and hard-of-hearing individuals. In M. Marschark & P. Spencer (Eds.), The handbook of deaf studies, language, and education (pp. 478–490). Oxford: Oxford University Press.

    Google Scholar 

  159. Sandler, W., & Lillo-Martin, D. (2006). Sign language and linguistic universals. Cambridge: Cambridge University Press.

    Google Scholar 

  160. Sarant, J. Z., & Naz, S. (2012). Cochlear implants in children: A review. In S. Naz (Ed.), Hearing loss (pp. 356–362). Rijeka: In Tech.

    Google Scholar 

  161. Sarant, J. Z., Harris, D. C., & Bennet, L. A. (2015). Academic outcomes for school-aged children with severe–profound hearing loss and early unilateral and bilateral cochlear implants. Journal of Speech, Language, and Hearing Research, 58(3), 1017–1032.

    PubMed  PubMed Central  Google Scholar 

  162. Schick, B., de Villiers, P., de Villiers, J., & Hoffmeister, R. (2007). Language and theory of mind: A study of deaf children. Child Development, 78(2), 376–396.

    PubMed  PubMed Central  Google Scholar 

  163. Schwartz, M., & Verschik, A. (2013). Achieving success in family language policy: Parents, children and educators in interaction. In M. Schwartz & A. Verschik (Eds.), Successful family language policy: Parents, children and educators in interaction (pp. 1–20). Dordrecht: Springer Science & Business Media.

    Google Scholar 

  164. Shew, M., Wichova, H., Lin, J., Ledbetter, L. N., & Staecker, H. (2019). Magnetic resonance imaging with cochlear implants and auditory brainstem implants: Are we truly practicing MRI safety? The Laryngoscope, 129(2), 482–489.

    Google Scholar 

  165. Simms, L., Baker, S., & Clark, M. D. (2013). The standardized visual communication and sign language checklist for signing children. Sign Language Studies, 14(1), 101–124.

    Google Scholar 

  166. Singleton, J. L., & Morgan, D. D. (2005). Natural signed language acquisition within the social context of the classroom. In B. Schick, M. Marschark, & P. E. Spencer (Eds.), Advances in the sign language development of deaf children (pp. 344–375). New York: Oxford University Press.

    Google Scholar 

  167. Skarzynski, H., Lorens, A., Matusiak, M., Porowski, M., Skarzynski, P. H., & James, C. J. (2014). Cochlear implantation with the nucleus slim straight electrode in subjects with residual low-frequency hearing. Ear and Hearing, 35(2), e33–e43.

    Google Scholar 

  168. Sparreboom, M., van Schoonhoven, J., van Zanten, B. G. A., Scholten, R. J. P. M., Mylanus, E. A. M., Grolman, W., et al. (2010). The effectiveness of bilateral cochlear implants for severe-to-profound deafness in children: A systematic review. Otology & Neurotology, 31(7), 1062–1071.

    Google Scholar 

  169. Svirsky, M. A., Robbins, A. M., Kirk, K. I., Pisoni, D. B., & Miyamoto, R. T. (2000). Language development in profoundly deaf children with cochlear implants. Psychological Science, 11(2), 153–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tarkan, Ö., Tuncer, Ü., Özdemir, S., Sürmelioğlu, Ö., Çetik, F., Kıroğlu, M., et al. (2013). Surgical and medical management for complications in 475 consecutive pediatric cochlear implantations. International Journal of Pediatric Otorhinolaryngology, 77(4), 473–479.

    Google Scholar 

  171. Thom, J. J., Carlson, M. L., Olson, M. D., Neff, B. A., Beatty, C. W., Facer, G. W., et al. (2013). The prevalence and clinical course of facial nerve paresis following cochlear implant surgery. The Laryngoscope, 123(4), 1000–1004.

    Google Scholar 

  172. Thoutenhoofd, E. D., Archbold, S., Gregory, S., Lutman, M. E., Nikolopoulos, T., & Sach, T. H. (2005). Paediatric cochlear implantation: Evaluating outcomes. London: Whurr.

    Google Scholar 

  173. Tobey, E. A., Geers, A. E., Sundarrajan, M., & Shin, S. (2011). Factors influencing speech production in elementary and high school-aged cochlear implant users. Ear and Hearing, 32(1 Suppl), 27S–38S.

    PubMed  PubMed Central  Google Scholar 

  174. Tomblin, J. B., Oleson, J. J., Ambrose, S. E., Walker, E. A., & Moeller, M. P. (2014). The influence of hearing aids on the speech and language development of children with hearing loss. JAMA Otolaryngology-Head & Neck Surgery, 140(5), 403–409.

    Google Scholar 

  175. Tomblin, J. B., Harrison, M., Ambrose, S. E., Walker, E. A., Oleson, J. J., & Moeller, M. P. (2015). Language outcomes in young children with mild to severe hearing loss. Ear and Hearing, 36(1), 76S–91S.

    PubMed  PubMed Central  Google Scholar 

  176. Uziel, A. S., Sillon, M., Vieu, A., Artieres, F., Piron, J.-P., Daures, J.-P., et al. (2007). Ten-year follow-up of a consecutive series of children with multichannel cochlear implants. Otology & Neurotology, 28(5), 615–628.

    Google Scholar 

  177. van der Werf, M., Thewissen, V., Dominguez, M. D., Lieb, R., Wittchen, H., & van Os, J. (2011). Adolescent development of psychosis as an outcome of hearing impairment: A 10-year longitudinal study. Psychological Medicine, 41(3), 477–485.

    Google Scholar 

  178. Voelker, R. (2019). Birth control device Essure is still under the microscope. JAMA, 321(5), 444–444.

    Google Scholar 

  179. Wang, H., Wang, Y., & Hu, Y. (2018). Emotional understanding in children with a cochlear implant. The Journal of Deaf Studies and Deaf Education, 24(2), 65–73.

    Google Scholar 

  180. Weaver, K. A., & Starner, T. (2011). We need to communicate!: Helping hearing parents of deaf children learn American Sign Language. In K. F. McCoy, & Y. Yesilada (Eds.) The Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 91–98). New York: ACM.

  181. White, T. (2008). The Deaf World: Audiologic considerations. https://www.mariondowns.com/images/research_PDF/deafworld_audiologicconsiderations%2520white.pdf. Accessed May 14, 2019.

  182. Wolfson, A. (2013). Jury awards $7.25M for hearing aid that severely shocked. https://www.usatoday.com/story/news/nation/2013/04/18/cochlear-implant-case-award/2094397/. Accessed May 28, 2019.

  183. Wong, C. L., Ching, T. Y., Cupples, L., Button, L., Leigh, G., Marnane, V., et al. (2017). Psychosocial development in 5-year-old children with hearing loss using hearing aids or cochlear implants. Trends in Hearing. https://doi.org/10.1177/2331216517710373.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Yoshinaga-Itano, C. (2006). Early identification, communication modality, and the development of speech and spoken language skills: Patterns and considerations. In P. E. Spencer & M. Marschark (Eds.), Advances in the spoken language development of deaf and hard-of-hearing children (pp. 298–327). Oxford: Oxford University Press.

    Google Scholar 

  185. Yoshinaga-Itano, C., Baca, R. L., & Sedey, A. L. (2010). Describing the trajectory of language development in the presence of severe to profound hearing loss: A closer look at children with cochlear implants versus hearing aids. Otology & Neurotology, 31(8), 1268–1274.

    Google Scholar 

  186. Yoshinaga-Itano, C., Sedey, A. L., & Mallene Wiggin, W. C. (2017). Early hearing detection and vocabulary of children with hearing loss. Pediatrics. https://doi.org/10.1542/peds.2016-2964.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zaidman-Zait, A. (2007). Parenting a child with a cochlear implant: A critical incident study. Journal of Deaf Studies and Deaf Education, 12(2), 221–241.

    Google Scholar 

  188. Zaidman-Zait, A. (2008). Everyday problems and stress faced by parents of children with cochlear implants. Rehabilitation Psychology, 53(2), 139–152.

    Google Scholar 

Download references

Acknowledgements

We thank Scott Smith for important help in shaping these arguments, and Melissa Kleschen, MD, for suggestions on the introduction as well as the reviewers and editors for their copious and generous comments.

Funding

This work received no external funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Donna Jo Napoli.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Humphries, T., Kushalnagar, P., Mathur, G. et al. Global Regulatory Review Needed for Cochlear Implants: A Call for FDA Leadership. Matern Child Health J 24, 1345–1359 (2020). https://doi.org/10.1007/s10995-020-03002-5

Download citation

Keywords

  • Deaf children and sign language
  • Cochlear implants
  • Sensitive period for first language acquisition
  • Federal drug administration as regulator of cochlear implants