Skip to main content
Log in

Influence of Prenatal Aerobic Exercise on Fetal Morphometry

  • Published:
Maternal and Child Health Journal Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to determine the effects of supervised prenatal aerobic exercise on fetal morphometrics at 36 weeks of gestation.

Methods

This study used data from a, 24-week, two-arm randomized controlled trial: aerobic exercise (EX) and stretching/breathing comparison group (CON). Singleton pregnancies (< 16 weeks pregnant) and women aged 18 to 40 years, BMI between 18.5 and 34.99 kg/m2, and no preexisting chronic health conditions were eligible. The EX group participated in 150 min of moderate-intensity weekly exercise while CON group participated in low-intensity stretching/breathing. Fetal morphometric outcomes included estimated fetal weight (EFW), ponderal index (PI), abdominal circumference (AC), anterior abdominal wall thickness (AAWT), fat mass, percent body fat, fat-free mass, assessed at 36 weeks gestation. Partial spearman rank correlations were performed, adjusting for 3rd trimester weight gain.

Results

Of the 128 pregnant women randomized, 83 (EX [n = 46] and CON [n = 37]) were eligible for analyses. Intention-to-treat analysis showed no differences in EFW (rhos = − 0.13; p = 0.28), PI (rhos = 0.03; p = 0.81), AC (rhos = − 0.22; p = 0.09), AAWT (rhos = − 0.11; p = 0.40), fat mass (rhos = − 0.16; p = 0.23), percent body fat (rhos = − 0.10; p = 0.43), and fat-free mass (rhos = − 0.22; p = 0.08), after adjusting for 3rd trimester weight gain. Similar results were observed in the per protocol analyses.

Conclusions

For Practice Moderate-intensity aerobic exercise during pregnancy was not associated with select fetal morphometrics at 36 weeks gestation. Potential differences in offspring morphometrics may only appear in the postnatal period, as previously documented. Further research into offspring tissue composition after birth is encouraged, specifically studies investigating differences in cellular signaling pathways related to adipose and skeletal muscle tissue development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ACOG Committee Opinion No. 650. (2015). Physical activity and exercise during pregnancy and the postpartum period. Obstetrics and Gynecology, 126(6), e135–142. https://doi.org/10.1097/AOG.0000000000001214.

    Article  Google Scholar 

  • Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R. J., Tudor-Locke, C., et al. (2011). 2011 Compendium of physical activities: A second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12.

    Article  PubMed  Google Scholar 

  • Archer, E. (2015). The childhood obesity epidemic as a result of nongenetic evolution: The maternal resources hypothesis. Mayo Clinic Proceedings, 90(1), 77–92. https://doi.org/10.1016/j.mayocp.2014.08.006.

    Article  PubMed  Google Scholar 

  • Archer, E., & McDonald, S. M. (2017). The maternal resources hypothesis and childhood obesity. Boca Raton: CRC Press, Taylor & Francis Group.

    Book  Google Scholar 

  • Bell, R. (2008). Trends in birthweight in the north of England. Human Fertility, 11(1), 1–8. https://doi.org/10.1080/14647270701654369.

    Article  PubMed  Google Scholar 

  • Bernstein, I. M., & Catalano, P. M. (1992). Influence of fetal fat on the ultrasound estimation of fetal weight in diabetic mothers. Obstetrics and Gynecology, 79(4), 561–563.

    CAS  PubMed  Google Scholar 

  • Boyle, K. E., Newsom, S. A., Janssen, R. C., Lappas, M., & Friedman, J. E. (2013). Skeletal muscle MnSOD, mitochondrial complex II, and SIRT3 enzyme activities are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism, 98(10), E1601–1609. https://doi.org/10.1210/jc.2013-1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle, K. E., Patinkin, Z. W., Shapiro, A. L. B., Baker, P. R., 2nd, Dabelea, D., & Friedman, J. E. (2016). Mesenchymal stem cells from infants born to obese mothers exhibit greater potential for adipogenesis: The Healthy Start BabyBUMP Project. Diabetes, 65(3), 647–659. https://doi.org/10.2337/db15-0849.

    Article  CAS  PubMed  Google Scholar 

  • Centers. (2004). National Health and Nutrition Examination Survey (NHANES): Anthropometry procedures manual. Atlanta, GA: Centers for Disease Control and Prevention.

    Google Scholar 

  • Clapp, J. F., III, & Capeless, E. L. (1990). Neonatal morphometrics after endurance exercise during pregnancy. American Journal of Obstetrics and Gynecology, 163, 1805–1811. https://doi.org/10.1016/0002-9378(90)90754-U.

    Article  PubMed  Google Scholar 

  • Clapp, J. F., III, Kim, H., Burciu, B., Schmidt, S., Petry, K., & Lopez, B. (2002). Continuing regular exercise during pregnancy: Effect of exercise volume on fetoplacental growth. American Journal of Obstetrics and Gynecology, 186(1), 142–147.

    Article  PubMed  Google Scholar 

  • Crane, S. S., Avallone, D. A., Thomas, A. J., & Catalano, P. M. (1996). Sonographic estimation of fetal body composition with gestational diabetes Mellitus at Term. Obstetrics & Gynecology, 88(5), 849–854. https://doi.org/10.1016/0029-7844(96)00292-X.

    Article  CAS  Google Scholar 

  • Dela, F., & Stallknecht, B. (2010). Effect of physical training on insulin secretion and action in skeletal muscle and adipose tissue of first-degree relatives of type 2 diabetic patients. American Journal of Physiology. Endocrinology and Metabolism, 299(1), E80–91. https://doi.org/10.1152/ajpendo.00765.2009.

    Article  CAS  PubMed  Google Scholar 

  • Hadlock, F. P., Harrist, R. B., Sharman, R. S., Deter, R. L., & Park, S. K. (1985). Estimation of fetal weight with the use of head, body, and femur measurements—A prospective study. American Journal of Obstetrics and Gynecology, 151(3), 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Harrod, C. S., Chasan-Taber, L., Reynolds, R. M., Fingerlin, T. E., Glueck, D. H., Brinton, J. T., et al. (2014). Physical activity in pregnancy and neonatal body composition: The Healthy Start study. Obstetrics and Gynecology, 124, 257–264. https://doi.org/10.1097/AOG.0000000000000373.

    Article  PubMed  Google Scholar 

  • Heim, T. (1983). Energy and lipid requirements of the fetus and the preterm infant. Journal of Pediatric Gastroenterology and Nutrition, 2, 16–41.

    Article  CAS  Google Scholar 

  • Herrera, E., & Ortega-Senovilla, H. (2014). Lipid metabolism during pregnancy and its implications for fetal growth. Current Pharmaceutical Biotechnology, 15(1), 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Zhao, J.-X., Yan, X., Zhu, M.-J., Long, N. M., McCormick, R. J., et al. (2012). Maternal obesity enhances collagen accumulation and cross-linking in skeletal muscle of ovine offspring. PLoS ONE, 7(2), e31691. https://doi.org/10.1371/journal.pone.0031691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikenoue, S., Waffarn, F., Sumiyoshi, K., Ohashi, M., Ikenoue, C., Buss, C., et al. (2016). Association of ultrasound-based measures of fetal body composition with newborn adiposity: Fetal body composition and newborn adiposity. Pediatric Obesity. https://doi.org/10.1111/ijpo.12198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, T., & Itoh, M. (2006). Longitudinal variance of fat mass deposition during pregnancy evaluated by ultrasonography: The ratio of visceral fat to subcutaneous fat in the abdomen. Gynecologic and Obstetric Investigation, 61(2), 115–118.

    Article  PubMed  Google Scholar 

  • Martin, J. A., Hamilton, B. E., Osterman, M., Curtin, S. C., & Matthews, T. (2015). Births: Final data for 2013. National Vital Statistics Reports: From the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 64(1), 1–65.

    Google Scholar 

  • Mottola, M. F., Davenport, M. H., Brun, C. R., Inglis, S. D., Charlesworth, S., & Sopper, M. M. (2006). VO2peak prediction and exercise prescription for pregnant women. Medicine and Science in Sports and Exercise, 38(8), 1389–1395.

    Article  PubMed  Google Scholar 

  • Pedersen, J., & Molsted-Pedersen, L. (1971). The hyperglycemia-hyperinsulinism theory and the weight of the newborn baby (p. 678). Amsterdam: Diabetes Excerpta Medica.

    Google Scholar 

  • Pescatello, L. S., & American College of Sports Medicine. (2014). ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.

    Google Scholar 

  • Shojaee-Moradie, F., Baynes, K. C., Pentecost, C., Bell, J. D., Thomas, E. L., Jackson, N. C., et al. (2007). Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism. Diabetologia, 50(2), 404–413. https://doi.org/10.1007/s00125-006-0498-7.

    Article  CAS  PubMed  Google Scholar 

  • Swain, D. P., Brawner, C. A., & American College of Sports Medicine. (2014). ACSM’s resource manual for guidelines for exercise testing and prescription. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Tong, J. F., Yan, X., Zhu, M. J., Ford, S. P., Nathanielsz, P. W., & Du, M. (2009). Maternal obesity downregulates myogenesis and β-catenin signaling in fetal skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 296(4), E917–E924. https://doi.org/10.1152/ajpendo.90924.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toro-Ramos, T., Paley, C., Pi-Sunyer, F. X., & Gallagher, D. (2015). Body composition during fetal development and infancy through the age of 5 years. European Journal of Clinical Nutrition, 69(12), 1279–1289. https://doi.org/10.1038/ejcn.2015.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinsier, R. L., Schutz, Y., & Bracco, D. (1992). Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans. The American Journal of Clinical Nutrition, 55(4), 790–794. https://doi.org/10.1093/ajcn/55.4.790.

    Article  CAS  PubMed  Google Scholar 

  • Wiebe, H. W., Boule, N. G., Chari, R., & Davenport, M. H. (2015). The effect of supervised prenatal exercise on fetal growth: A meta-analysis. Obstetrics and Gynecology, 125(5), 1185–1194. https://doi.org/10.1097/aog.0000000000000801.

    Article  PubMed  Google Scholar 

  • Yeo, S., & Davidge, S. T. (2001). Possible beneficial effect of exercise, by reducing oxidative stress, on the incidence of preeclampsia. Journal of Women s Health & Gender-Based Medicine, 10(10), 983–989. https://doi.org/10.1089/152460901317193558.

    Article  CAS  Google Scholar 

  • Yeo, S., Steele, N. M., Chang, M. C., Leclaire, S. M., Ronis, D. L., & Hayashi, R. (2000). Effect of exercise on blood pressure in pregnant women with a high risk of gestational hypertensive disorders. The Journal of Reproductive Medicine, 45(4), 293–298.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the pregnant women and their neonates for their participation in this study.

Funding

This study was funded by the American Heart Association (AHA Grant #15GRNT24470029) and by ECU internal funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda E. May.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, S.M., Newton, E., Strickland, D. et al. Influence of Prenatal Aerobic Exercise on Fetal Morphometry. Matern Child Health J 24, 1367–1375 (2020). https://doi.org/10.1007/s10995-020-03000-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10995-020-03000-7

Keywords

Navigation