Maternal and Child Health Journal

, Volume 21, Issue 6, pp 1367–1376 | Cite as

Markers of Oxidative Stress in Human Milk do not Differ by Maternal BMI But are Related to Infant Growth Trajectories

  • Bridget E. YoungEmail author
  • Zachary W. Patinkin
  • Laura Pyle
  • Becky de la Houssaye
  • Barbara S. Davidson
  • Sheela Geraghty
  • Ardythe L. Morrow
  • Nancy Krebs


Objective Obesity in adults is associated with inflammation and oxidative stress. Whether or not this phenotype is reflected in human milk (HM) composition, or may impact infant growth remains unknown. We investigated whether HM from overweight/obese (OW/Ob) mothers exhibited higher concentrations of inflammatory cytokines and markers of oxidative stress. We also correlated these bioactive components with infant growth patterns. Methods This was an observational cohort of 56 breastfeeding mothers and their infants [33 normal weight (NW) and 23 OW/Ob]. Infants were followed until 6 months of age and HM collected at 2-weeks and 4-months. Results Markers of oxidative stress, 8-hydroxy-deoxyguanosine (8OHdG) and 4-hydroxynonenol (HNE), decreased in HM over time (p < 0.001) and did not differ between NW and OW/Ob women. Concentrations of inflammatory cytokines, IL-6, IL-8, and TNF-α, were all inter-correlated (p < 0.001) but did not differ between NW and OW/Ob women. HM fat, protein, lactose, and total calories did not differ between NW and OW/Ob women. Infant growth patterns did not differ by group. In a model of infant weight-for-length-Z score trajectory, there was a significant interaction between both lactose and 8OHdG with maternal group: HM lactose and 8OHdG concentrations were both positively associated with increases in WLZ trajectory only among infants breastfed by OW/Ob mothers. Conclusions for Practice HM composition was relatively stable between NW and OW/Ob women. In exclusively breastfed infants, HM concentrations of lactose and 8OHdG, a marker of oxidative stress, may contribute to regulation of infant weight gain, especially among infants of OW/Ob women.


Oxidative stress Infant growth Human milk composition Maternal obesity Breastfeeding 



Weight for age Z-score


Length for age Z-score


Weight for length Z-score


Human milk







We wish to thank the mothers and infants who participated in this research. This work was supported in part by: National Institute of Health: NIDDK T32: DK007658-21 and NIDDK K24: DK083772 and NICHD P01: HD1302; Colorado Clinical & Translational Sciences Institute (CCTSI) Child and Maternal Health Award and with the Development and Informatics Service Center (DISC) Grant support (NIH/NCRR Colorado CTSI Grant Number UL1 RR025780); and Cincinnati Clinical & Translational Sciences & Training (CCTST): Grant ULRR026314.


  1. Ahuja, S., Boylan, M., Hart, S., Roman-Shriver, C., Spallholz, J., Pence, B., & Sawyer, B. (2011). Glucose and insulin levels are increased in obese and overweight mothers’ breast-milk. Food and Nutrition Sciences, 2, 201–206.CrossRefGoogle Scholar
  2. Alexandre, V., Even, P. C., Larue-Achagiotis, C., Blouin, J. M., Blachier, F., Benamouzig, R., … & Davila, A. M. (2013). Lactose malabsorption and colonic fermentations alter host metabolism in rats. British Journal of Nutrition, 110(4), 625–631. doi: 10.1017/S0007114512005557.CrossRefPubMedGoogle Scholar
  3. Andreas, N. J., Hyde, M. J., Gale, C., Parkinson, J. R., Jeffries, S., Holmes, E., & Modi, N. (2014). Effect of maternal body mass index on hormones in breast milk: A systematic review. PLoS ONE, 9(12), e115043. doi: 10.1371/journal.pone.0115043.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barbosa, L., Butte, N. F., Villalpando, S., Wong, W. W., & Smith, E. O. (1997). Maternal energy balance and lactation performance of Mesoamerindians as a function of body mass index. The American Journal of Clinical Nutrition, 66(3), 575–583.PubMedGoogle Scholar
  5. Beyerlein, A., & von Kries, R. (2011). Breastfeeding and body composition in children: Will there ever be conclusive empirical evidence for a protective effect against overweight? American Journal of Clinical Nutrition, 94(6 Suppl), 1772S–1775S. doi: 10.3945/ajcn.110.000547.CrossRefPubMedGoogle Scholar
  6. Boney, C. M., Verma, A., Tucker, R., & Vohr, B. R. (2005). Metabolic syndrome in childhood: Association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics, 115(3), e290–e296. doi: 10.1542/peds.2004-1808.CrossRefPubMedGoogle Scholar
  7. Buyken, A. E., Karaolis-Danckert, N., Remer, T., Bolzenius, K., Landsberg, B., & Kroke, A. (2008). Effects of breastfeeding on trajectories of body fat and BMI throughout childhood., 16(2), 389–395. doi: 10.1038/oby.2007.57.
  8. Cederlund, A., Kai-Larsen, Y., Printz, G., Yoshio, H., Alvelius, G., Lagercrantz, H., … Agerberth, B. (2013). Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis. PLoS ONE, 8(1), e53876. doi: 10.1371/journal.pone.0053876.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Crume, T. L., Ogden, L. G., Mayer-Davis, E. J., Hamman, R. F., Norris, J. M., Bischoff, K. J., … Dabelea, D. (2012). The impact of neonatal breast-feeding on growth trajectories of youth exposed and unexposed to diabetes in utero: The EPOCH Study. International Journal of Obesity, 36(4), 529–534.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Druet, C., Stettler, N., Sharp, S., Simmons, R. K., Cooper, C., Smith, G. D., … & Ong, K. K. (2012). Prediction of childhood obesity by infancy weight gain: An individual-level meta-analysis. Paediatric Perinatal Epidemiology, 26(1), 19–26.CrossRefPubMedGoogle Scholar
  11. Du, Y., Yang, M., Lee, S., Behrendt, C. L., Hooper, L. V., Saghatelian, A., & Wan, Y. (2012). Maternal western diet causes inflammatory milk and TLR2/4-dependent neonatal toxicity. Genes and Development, 26(12), 1306–1311.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Garofalo, R. (2010). Cytokines in human milk. The Journal of Pediatrics, 156(2 Suppl), S36–S40.CrossRefPubMedGoogle Scholar
  13. Geraghty, S. R., Davidson, B. S., Warner, B. B., Sapsford, A. L., Ballard, J. L., List, B. A., … & Morrow, A. L. (2005). The development of a research human milk bank. Journal of Human Lactation, 21(1), 59–66.CrossRefPubMedGoogle Scholar
  14. Gorski, J. N., Dunn-Meynell, A. A., Hartman, T. G., & Levin, B. E. (2006). Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291(3), R768–R778. doi: 10.1152/ajpregu.00138.2006.PubMedGoogle Scholar
  15. Groer, M. W., & Shelton, M. M. (2009). Exercise is associated with elevated proinflammatory cytokines in human milk. J.Obstet.Gynecol.Neonatal Nurs., 38(1), 35–41.CrossRefPubMedGoogle Scholar
  16. He, T., Priebe, M. G., Harmsen, H. J., Stellaard, F., Sun, X., Welling, G. W., & Vonk, R. J. (2006). Colonic fermentation may play a role in lactose intolerance in humans. Journal of Nutrition, 136(1), 58–63.PubMedGoogle Scholar
  17. Huh, J. Y., Son, D. J., Lee, Y., Lee, J., Kim, B., Lee, H. M., … & Chung, M. H. (2012). 8-Hydroxy-2-deoxyguanosine prevents plaque formation and inhibits vascular smooth muscle cell activation through Rac1 inactivation. Free Radical Biology and Medicine, 53(1), 109–121. doi: 10.1016/j.freeradbiomed.2012.03.023.CrossRefPubMedGoogle Scholar
  18. Kalliomaki, M., Collado, M. C., Salminen, S., & Isolauri, E. (2008). Early differences in fecal microbiota composition in children may predict overweight. The American Journal of Clinical Nutrition, 87(3), 534–538.PubMedGoogle Scholar
  19. Kim, D. H., Cho, I. H., Kim, H. S., Jung, J. E., Kim, J. E., Lee, K. H., … & Chung, M. H. (2006a). Anti-inflammatory effects of 8-hydroxydeoxyguanosine in LPS-induced microglia activation: Suppression of STAT3-mediated intercellular adhesion molecule-1 expression. Experimental and Molecular Medicine, 38(4), 417–427. doi: 10.1038/emm.2006.49.
  20. Kim, H. S., Ye, S. K., Cho, I. H., Jung, J. E., Kim, D. H., Choi, S., … & Chung, M. H. (2006b). 8-hydroxydeoxyguanosine suppresses NO production and COX-2 activity via Rac1/STATs signaling in LPS-induced brain microglia. Free Radical Biology and Medicine, 41(9), 1392–1403. doi: 10.1016/j.freeradbiomed.2006.07.018.
  21. Kirchner, S., Kieu, T., Chow, C., Casey, S., & Blumberg, B. (2010). Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Molecular endocrinology (Baltimore, Md.), 24(3), 526–539.CrossRefGoogle Scholar
  22. Lam, P. M., Mistry, V., Marczylo, T. H., Konje, J. C., Evans, M. D., & Cooke, M. S. (2012). Rapid measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in human biological matrices using ultra-high-performance liquid chromatography-tandem mass spectrometry. Free Radical Biology and Medicine, 52(10), 2057–2063.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lawrence, R. A., Lawrence, R. M. (2011). Breastfeeding—a guide for the medical professional (7th ed.). Philadelphia: Elsevier Mosby.Google Scholar
  24. Lee, S. H., Taek Han, S., Choi, S. W., Sung, S. Y., You, H. J., Ye, S. K., & Chung, M. H. (2009). Inhibition of Rac and Rac-linked functions by 8-oxo-2′-deoxyguanosine in murine macrophages. Free Radical Research, 43(1), 78–84. doi: 10.1080/10715760802609432.CrossRefPubMedGoogle Scholar
  25. Li, C., Kaur, H., Choi, W. S., Huang, T. T., Lee, R. E., & Ahluwalia, J. S. (2005). Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight. Obesity Research, 13(2), 362–371. doi: 10.1038/oby.2005.48.CrossRefPubMedGoogle Scholar
  26. Martin, L. J., Woo, J. G., Geraghty, S. R., Altaye, M., Davidson, B. S., Banach, W., … & Morrow, A. L. (2006). Adiponectin is present in human milk and is associated with maternal factors. The American Journal of Clinical Nutrition, 83(5), 1106–1111.PubMedGoogle Scholar
  27. Mayer-Davis, E. J., Rifas-Shiman, S. L., Zhou, L., Hu, F. B., Colditz, G. A., & Gillman, M. W. (2006). Breast-feeding and risk for childhood obesity: Does maternal diabetes or obesity status matter? Diabetes Care, 29(10), 2231–2237.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Michalski, M. C., Calzada, C., Makino, A., Michaud, S., & Guichardant, M. (2008). Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk—a preliminary study. Molecular Nutrition & Food Research, 52(12), 1478–1485.CrossRefGoogle Scholar
  29. Monteiro, P. O., & Victora, C. G. (2005). Rapid growth in infancy and childhood and obesity in later life—a systematic review. Obesity Reviews, 6(2), 143–154.CrossRefPubMedGoogle Scholar
  30. Oben, J. A., Mouralidarane, A., Samuelsson, A. M., Matthews, P. J., Morgan, M. L., McKee, C., … & Taylor, P. D. (2010). Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. Journal of Hepatology, 52(6), 913–920.CrossRefPubMedGoogle Scholar
  31. Prevention, C. f. D. C. a. (2010). Growth charts. WHO growth standards are recommended for use in the U.S. for infants and children 0 to 2 years of age. Retrieved from
  32. Samuel, V. T., & Shulman, G. I. (2012). Mechanisms for insulin resistance: Common threads and missing links. Cell, 148(5), 852–871.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sederquist, B., Fernandez-Vojvodich, P., Zaman, F., & Savendahl, L. (2014). Recent research on the growth plate: Impact of inflammatory cytokines on longitudinal bone growth. Journal of Molecular Endocrinology, 53(1), T35–44. doi: 10.1530/JME-14-0006.
  34. Szlagatys-Sidorkiewicz, A., Zagierski, M., Jankowska, A., Luczak, G., Macur, K., Baczek, T., … Kaminska, B (2012). Longitudinal study of vitamins A, E and lipid oxidative damage in human milk throughout lactation. Early Human Development, 88(6), 421–424. doi: 10.1016/j.earlhumdev.2011.10.007.CrossRefPubMedGoogle Scholar
  35. Taveras, E. M., Rifas-Shiman, S. L., Sherry, B., Oken, E., Haines, J., Kleinman, K., … & Gillman, M. W. (2011). Crossing growth percentiles in infancy and risk of obesity in childhood. Archives of Pediatrics and Adolescent Medicine, 165(11), 993–998.CrossRefPubMedGoogle Scholar
  36. Whitaker, R. C. (2004). Predicting preschooler obesity at birth: The role of maternal obesity in early pregnancy. Pediatrics, 114(1), e29–e36.CrossRefPubMedGoogle Scholar
  37. Young, B. E., Johnson, S. L., & Krebs, N. F. (2012). Biological determinants linking infant weight gain and child obesity: Current knowledge and future directions. Advances in Nutrition, 3(5), 675–686. doi: 10.3945/an.112.002238.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pediatrics Section of NutritionUniversity of Colorado School of MedicineAuroraUSA
  2. 2.Department of Biostatistics and InformaticsUniversity of Colorado School of Public HealthAuroraUSA
  3. 3.Department of Pediatrics Section of NeonatologyUniversity of Colorado School of MedicineAuroraUSA
  4. 4.Department of Pediatrics, Center for Interdisciplinary Research in Human Milk and LactationCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  5. 5.Center for Breastfeeding MedicineCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations