Abstract
Objectives The prevalence of extreme prematurity at birth has increased, but little research has examined its impact on developmental outcomes in large representative samples within the United States. This study examined the association of extreme prematurity with kindergarteners’ reading skills, mathematics skills and fine motor skills. Methods The early childhood longitudinal study-birth cohort, a representative sample of the US children born in 2001 was analyzed for this study. Early reading and mathematics skills and fine motor skills were compared among 200 extremely premature children (EPC) (gestational age <28 wks or birthweight <1000 g), 500 premature children (PC), and 4300 term children (TC) (≥37wks or ≥2500 g). Generalized linear regression analyses included sampling weights, children’s age, race, sex, and general health status, and parental marital status and education among singleton children. Results At age 5 years, EPC were 2.6(95 % CI 1.7–3.8) times more likely to fail build a gate and were 3.1(95 % CI 1.6–5.8) times more likely to fail all four drawing tasks compared to TC (p values <0.001). Fine motor performance of PC (failed to build a gate, 1.3[95 % CI 1.0–1.7]; failed to draw all four shapes, 1.1[95 % CI 0.8–1.6]) was not significantly different from TC. Mean early reading scale score (36.8[SE:1.3]) of EPC was 4.0 points lower than TC (p value < 0.0001) while mean reading score (39.9[SE:1.4]) of PC was not significantly different from TC (40.8[SE:1.1]). Mean mathematics scale score were significantly lower for both EPC (35.5[SE:1.0], p value < 0.001) and PC (39.8[SE:0.8], p value = 0.023) compared to TC (41.0[SE:0.6]). Conclusions for Practice Extreme prematurity at birth was associated with cognitive and fine motor delays at age 5 years. This suggests that based on a nationally representative sample of infants, the biological risk of extreme prematurity persists after adjusting for other factors related to development.
This is a preview of subscription content, access via your institution.

References
Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudoever, J. B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717–728.
Anderson, P., & Doyle, L. W. (2003). Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA, the Journal of the American Medical Association, 289(24), 3264–3272.
Barnhart, R. C., Davenport, M. J., Epps, S. B., & Nordquist, V. M. (2003). Developmental coordination disorder. Archives of Disease in Childhood. Fetal and Neonatal Edition, 83(8), 722–731.
Bhat, R., Salas, A. A., Foster, C., Carlo, W. A., & Ambalavanan, N. (2012). Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics, 129(3), e682–e689.
Bode, M. M., D’Eugenio, D. B., Forsyth, N., Coleman, J., Gross, C. R., & Gross, S. J. (2009). Outcome of extreme prematurity: A prospective comparison of 2 regional cohorts born 20 years apart. Pediatrics, 124(3), 866–874.
Bonifacio, S. L., Glass, H. C., Chau, V., Berman, J. I., Xu, D., Brant, R., et al. (2010). Extreme premature birth is not associated with impaired development of brain microstructure. The Journal of pediatrics, 157(5), 726–732.
Broussard, C. S., Gilboa, S. M., Lee, K. A., Oster, M., Petrini, J. R., & Honein, M. A. (2012). Racial/ethnic differences in infant mortality attributable to birth defects by gestational age. Pediatrics, 130(3), e518–e527.
Casey, P. H., Whiteside-Mansell, L., Barrett, K., Bradley, R. H., & Gargus, R. (2006). Impact of prenatal and/or postnatal growth problems in low birth weight preterm infants on school-age outcomes: An 8-year longitudinal evaluation. Pediatrics, 118(3), 1078–1086.
Duncan, S. E., & De Avila, E. A. (1998). PreLAS 2000. Monterey, CA: CTB/McGraw-Hill.
Dunn, L. M., & Dunn, L. M. (1997). Peabody picture vocabulary test (PPVT-III) (3rd ed.). Upper Saddle River, NJ: Pearson Publishing.
French, N. (2007). Consensus statement on perinatal care. Journal of Paediatrics and Child Health, 43(6), 492–493.
Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability (3rd ed.). Austin, TX: PRO-ED Inc.
Gray, R., Petrou, S., Hockley, C., & Gardner, F. (2007). Self-reported health status and health-related quality of life of teenagers who were born before 29 weeks’ gestational age. Pediatrics, 120(1), e86–e93.
Hack, M., Breslau, N., Aram, D., Weissman, B., Klein, N., & Borawski-Clark, E. (1992). The effect of very low birth weight and social risk on neurocognitive abilities at school age. Journal of Developmental and Behavioral Pediatrics: JDBP, 13(6), 412–420.
Hack, M., Forrest, C. B., Schluchter, M., Taylor, H. G., Drotar, D., Holmbeck, G., et al. (2011). Health status of extremely low-birth-weight children at 8 years of age: Child and parent perspective. Archives of Pediatrics and Adolescent Medicine, 165(10), 922–927.
Hack, M., Schluchter, M., Margevicius, S., Andreias, L., Taylor, H. G., & Cuttler, L. (2014). Trajectory and correlates of growth of extremely-low-birth-weight adolescents. Pediatric Research, 75(2), 358–366.
Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Andreias, L., et al. (2005). Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990s. JAMA, the Journal of the American Medical Association, 294(3), 318–325.
Hack, M., Taylor, H. G., Klein, N., & Mercuri-Minich, N. (2000). Functional limitations and special health care needs of 10- to 14-year-old children weighing less than 750 grams at birth. Pediatrics, 106(3), 554–560.
Hille, E. T., den Ouden, A. L., Bauer, L., van den Oudenrijn, C., Brand, R., & Verloove-Vanhorick, S. P. (1994). School performance at nine years of age in very premature and very low birth weight infants: perinatal risk factors and predictors at five years of age. Collaborative project on preterm and small for gestational age (POPS) infants in The Netherlands. The Journal of pediatrics, 125(3), 426–434.
Hintz, S. R., Kendrick, D. E., Vohr, B. R., Poole, W. K., & Higgins, R. D. (2005). Changes in neurodevelopmental outcomes at 18 to 22 months’ corrected age among infants of less than 25 weeks’ gestational age born in 1993–1999. Pediatrics, 115(6), 1645–1651.
Hoekstra, R. E., Ferrara, T. B., Couser, R. J., Payne, N. R., & Connett, J. E. (2004). Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23–26 weeks’ gestational age at a tertiary center. Pediatrics, 113(1 Pt 1), e1–e6.
Johnson, S. (2007). Cognitive and behavioural outcomes following very preterm birth. Seminars in Fetal and Neonatal Medicine, 12(5), 363–373.
Kilbride, H. W., Thorstad, K., & Daily, D. K. (2004). Preschool outcome of less than 801-gram preterm infants compared with full-term siblings. Pediatrics, 113(4), 742–747.
Klebanoff, M. A., & Keim, S. A. (2011). Epidemiology: The changing face of preterm birth. Clinics in Perinatology, 38(3), 339–350.
Korvenranta, E., Lehtonen, L., Peltola, M., Hakkinen, U., Andersson, S., Gissler, M., et al. (2009). Morbidities and hospital resource use during the first 3 years of life among very preterm infants. Pediatrics, 124(1), 128–134.
Kuczmarski, R. J., Ogden, C. L., Grummer-Strawn, L. M., Flegal, K. M., Guo, S. S., Wei, R., et al. (2000). CDC growth charts: United States. Advance Data, 8(314), 1–27.
Lee, E. S., Forthoffer, R. N., & Lorimor, R. J. (1989). Analyzing complex survey data (Vol. 71). Beverly Hills, CA: Sage Publications Inc.
Leversen, K. T., Sommerfelt, K., Ronnestad, A., Kaaresen, P. I., Farstad, T., Skranes, J., et al. (2011). Prediction of neurodevelopmental and sensory outcome at 5 years in Norwegian children born extremely preterm. Pediatrics, 127(3), e630–e638.
Mikkola, K., Ritari, N., Tommiska, V., Salokorpi, T., Lehtonen, L., Tammela, O., et al. (2005). Neurodevelopmental outcome at 5 years of age of a national cohort of extremely low birth weight infants who were born in 1996–1997. Pediatrics, 116(6), 1391–1400.
Najarian, M., Snow, K., Lennon, J., and Kinsey, S. (2010). Early childhood longitudinal study, birth cohort (ECLS-B), kindergarten 2006 and 2007 data file user’s manual (2010-010). Washington, D.C.: National Center for Eudcation Statistics, Institute of Education Sciences, U.S. Department of Education.
Orchinik, L. J., Taylor, H. G., Espy, K. A., Minich, N., Klein, N., Sheffield, T., et al. (2011). Cognitive outcomes for extremely preterm/extremely low birth weight children in kindergarten. Journal of the International Neuropsychological Society: JINS, 17(6), 1067–1079.
Pascoe, J. M., & Earp, J. A. (1984). The effect of mothers’ social support and life changes on the stimulation of their children in the home. American Journal of Public Health, 74(4), 358–360.
Rijken, M., Stoelhorst, G. M. S. J., Martens, S. E., van Zweiten, P. H. T., Brand, R., Maarten Wit, J., et al. (2003). Mortality and neurologic, mental, and psychomotor development at 2 years in infants born less than 27 weeks’ gestation: The Leiden follow-up project on prematurity. Pediatrics, 112(2), 351–358.
Saigal, S., Rosenbaum, P. L., Feeny, D., Burrows, E., Furlong, W., Stoskopf, B. L., et al. (2000). Parental perspectives of the health status and health-related quality of life of teen-aged children who were extremely low birth weight and term controls. Pediatrics, 105(3 Pt 1), 569–574.
Shonkoff, J. P. (1984). Social support and the development of vulnerable children. American Journal of Public Health, 74(4), 310–312.
Snow, K., Derecho, A., Wheeless, S., Lennon, J., Rosen, J., Rogers, J., et al. (2010). Early childhood longitudinal study, birth cohort (ECLS-B), kindergarten 2006 and 2007 data file user’s manual (NCES 2010-010). Washington, DC: National Center for Education Statistics, Institute of Education Sciences.
Spittle, A., Orton, J., Anderson, P., Boyd, R., & Doyle, L. W. (2012). Early developmental intervention programmes post-hospital discharge to prevent motor and cognitive impairments in preterm infants. The Cochrane Database of Systematic Reviews, 12, CD005495.
Tanis, J. C., van der Ree, M. H., Roze, E., Huis In’t Veld, A. E., van den Berg, P. P., Van Braeckel, K. N., et al. (2012). Functional outcome of very preterm-born and small-for-gestational-age children at school age. Pediatric Research, 72(6), 641–648.
Taylor, H. G., Klein, N., Anselmo, M. G., Minich, N., Espy, K. A., & Hack, M. (2011). Learning problems in kindergarten students with extremely preterm birth. Archives of Pediatrics and Adolescent Medicine, 165(9), 819–825.
Tommiska, V., Heinonen, K., Kero, P., Pokela, M. L., Tammela, O., Jarvenpaa, A. L., et al. (2003). A national two year follow up study of extremely low birthweight infants born in 1996–1997. Archives of Disease in Childhood. Fetal and Neonatal Edition, 88(1), F29–F35.
Vohr, B. R., Wright, L. L., Dusick, A. M., Mele, L., Verter, J., Steichen, J. J., et al. (2000). Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994. Pediatrics, 105(6), 1216–1226.
Vohr, B. R., Wright, L. L., Poole, W. K., & McDonald, S. A. (2005). Neurodevelopmental outcomes of extremely low birth weight infants < 32 weeks’ gestation between 1993 and 1998. Pediatrics, 116(3), 635–643.
Woythaler, M., McCormick, M. C., Mao, W. Y., & Smith, V. C. (2015). Late preterm infants and neurodevelopmental outcomes at kindergarten. Pediatrics, 136(3), 424–431.
Acknowledgments
Restricted use of ECLS-B data were obtained by approval and permission of the Institute of Education Sciences (IES) Data Security Office of the U.S. Department of Education, National Center for Education Statistics. We are grateful for multiple sponsoring organizations and IES Data Security Office for their assistance. The material contained in this study has been partly presented as an abstract at the 52nd Annual Meeting of the European Society for Paediatric Research in 2011. This research was a non-funded study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lee, M., Pascoe, J.M. & McNicholas, C.I. Reading, Mathematics and Fine Motor Skills at 5 Years of Age in US Children who were Extremely Premature at Birth. Matern Child Health J 21, 199–207 (2017). https://doi.org/10.1007/s10995-016-2109-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10995-016-2109-7
Keywords
- Preterm
- Low birth weight
- Early childhood longitudinal study-birth cohort
- Childhood development