Skip to main content

Advertisement

Log in

A Longitudinal Study of Maternal Folate and Vitamin B12 Status in Pregnancy and Postpartum, with the Same Infant Markers at 6 Months of Age

  • Published:
Maternal and Child Health Journal Aims and scope Submit manuscript

Abstract

Folate and vitamin B12 are involved in homocysteine metabolism and are critical to the methylation of DNA. We aimed to assess plasma vitamin B12 (pB12), plasma folate (pFol), and red cell folate (rcFol) in women and their infants during pregnancy and after birth. Maternal biomarkers were tested as predictors of infant biomarkers, including plasma homocysteine (pHcy), at age 6 months. Participants (n = 153) were recruited at the John Hunter Hospital, Australia. Maternal fasting blood samples were collected at 20 and 36 weeks gestation, and at 14 and 27 weeks postpartum. Fifty healthy, term infants provided non-fasting samples at age 6 months. Plasma homocysteine data were available for 16 infants at age 6 months. Maternal pB12 concentrations fell by 16% from 20 to 36 weeks gestation, but had recovered by 14 weeks postpartum. Maternal rcFol concentrations fell by 31% from 20 weeks gestation to 27 weeks postpartum. Infants breastfed at 6 months had lower pB12 (median 159 vs. 402 pmol/L, n = 23 vs. 18, P < 0.01) and folate (median folate z-score -0.58 vs. 0.85, n = 23 vs. 17, P < 0.01), and higher pHcy (median 11.9 vs. 7.3 μmol/L, n = 8 vs. 6, P < 0.01), than those on infant formula. Maternal pregnancy pFol, but not pB12, inversely predicted infant pHcy, after adjustment for the infant’s current pB12 (P = 0.04). Changes in maternal B12 and folate occur during pregnancy and after birth. Infant homocysteine metabolism may be regulated through maternal folate concentrations during pregnancy and postnatal feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

IQR:

Interquartile range

pB12:

Plasma vitamin B12

pFol:

Plasma folate

pHcy:

Plasma homocysteine

r :

Pairwise correlation coefficients

rcFol:

Red cell folate

SD:

Standard deviation

WATCH:

Women and their Children’s Health

References

  1. Chanarin, I. (1990). The megaloblastic anaemias (3rd ed.). Oxford: Blackwell Scientific.

    Google Scholar 

  2. Locksmith, G. J., & Duff, P. (1998). Preventing neural tube defects: the importance of periconceptional folic acid supplements. Obstetrics and Gynecology, 91(6), 1027–1034.

    Article  PubMed  CAS  Google Scholar 

  3. Hay, G., Clausen, T., Whitelaw, A., et al. (2010). Maternal folate and cobalamin status predicts vitamin status in newborns and 6-month-old infants. Journal of Nutrition, 140(3), 557–564.

    Article  PubMed  CAS  Google Scholar 

  4. Goh, Y. I., Bollano, E., Einarson, T. R., et al. (2006). Prenatal multivitamin supplementation and rates of congenital anomalies: A meta-analysis. Journal of Obstetrics & Gynaecology of Canada, 28(8), 680–689.

    Google Scholar 

  5. Goh, Y. I., Bollano, E., Einarson, T. R., et al. (2007). Prenatal multivitamin supplementation and rates of pediatric cancers: a meta-analysis. Clinical Pharmacology and Therapeutics, 81(5), 685–691.

    Article  PubMed  CAS  Google Scholar 

  6. Ray, J. G., & Blom, H. J. (2003). Vitamin B12 insufficiency and the risk of fetal neural tube defects. QJM, 96(4), 289–295.

    Article  PubMed  CAS  Google Scholar 

  7. Ronnenberg, A. G., Goldman, M. B., Chen, D., et al. (2002). Preconception homocysteine and B vitamin status and birth outcomes in Chinese women. American Journal of Clinical Nutrition, 76(6), 1385–1391.

    PubMed  CAS  Google Scholar 

  8. Muthayya, S., Kurpad, A. V., Duggan, C. P., et al. (2006). Low maternal vitamin B12 status is associated with intrauterine growth retardation in urban South Indians. European Journal of Clinical Nutrition, 60(6), 791–801.

    Article  PubMed  CAS  Google Scholar 

  9. Lindblad, B., Zaman, S., Malik, A., et al. (2005). Folate, vitamin B12, and homocysteine levels in South Asian women with growth-retarded fetuses. Acta Obstetricia et Gynecologica Scandinavica, 84(11), 1055–1061.

    PubMed  Google Scholar 

  10. Reznikoff-Etievant, M. F., Zittoun, J., Vaylet, C., et al. (2002). Low Vitamin B(12) level as a risk factor for very early recurrent abortion. European Journal of Obstetrics, Gynaecology, and Reproductive Biology, 104(2), 156–159.

    Article  CAS  Google Scholar 

  11. Milman, N., Byg, K. E., Hvas, A. M., et al. (2006). Erythrocyte folate, plasma folate and plasma homocysteine during normal pregnancy and postpartum: A longitudinal study comprising 404 Danish women. European Journal of Haematology, 76(3), 200–205.

    Article  PubMed  CAS  Google Scholar 

  12. Milman, N., Byg, K. E., Bergholt, T., et al. (2006). Cobalamin status during normal pregnancy and postpartum: A longitudinal study comprising 406 Danish women. European Journal of Haematology, 76(6), 521–525.

    Article  PubMed  CAS  Google Scholar 

  13. Klee, G. G. (2000). Cobalamin and folate evaluation: Measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate. Clinical Chemistry, 46(8 Pt 2), 1277–1283.

    PubMed  CAS  Google Scholar 

  14. Diez, N., Perez, R., Hurtado, V., et al. (2005). Hyperhomocysteinaemia induced by dietary folate restriction causes kidney oxidative stress in rats. British Journal of Nutrition, 94(2), 204–210.

    Article  PubMed  CAS  Google Scholar 

  15. Finkelstein, J. D. (1998). The metabolism of homocysteine: Pathways and regulation. European Journal of Pediatrics, 157(Suppl 2), S40–S44.

    Article  PubMed  CAS  Google Scholar 

  16. Sakamoto, A., Ono, H., Mizoguchi, N., et al. (2001). Betaine and homocysteine concentrations in infant formulae and breast milk. Pediatrics International, 43, 637–640.

    Article  PubMed  CAS  Google Scholar 

  17. Lillycrop, K. A., Phillips, E. S., Jackson, A. A., et al. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. Journal of Nutrition, 135(6), 1382–1386.

    PubMed  CAS  Google Scholar 

  18. Burdge, G. C. (2006). Homocysteine: A role in fetal programming? British Journal of Nutrition, 96(3), 415–417.

    PubMed  CAS  Google Scholar 

  19. Tsai, J. C., Perrella, M. A., Yoshizumi, M., et al. (1994). Promotion of vascular smooth muscle cell growth by homocysteine: A link to atherosclerosis. Proceedings of the National Academy of Science USA, 91(14), 6369–6373.

    Article  CAS  Google Scholar 

  20. Mujumdar, V. S., Hayden, M. R., & Tyagi, S. C. (2000). Homocyst(e)ine induces calcium second messenger in vascular smooth muscle cells. Journal of Cellular Physiology, 183(1), 28–36.

    Article  PubMed  CAS  Google Scholar 

  21. Robert, K., Pages, C., Ledru, A., et al. (2005). Regulation of extracellular signal-regulated kinase by homocysteine in hippocampus. Neuroscience, 133(4), 925–935.

    Article  PubMed  CAS  Google Scholar 

  22. Refsum, H., Nurk, E., Smith, A. D., et al. (2006). The Hordaland Homocysteine study: A community-based study of homocysteine, its determinants, and associations with disease. Journal of Nutrition, 136(6 Suppl), 1731S–1740S.

    PubMed  CAS  Google Scholar 

  23. Hure, A. J., Smith, R., & Collins, C. E. (2008). A recruiting failure turned success. BMC Health Services Research, 8, 64.

    Article  PubMed  Google Scholar 

  24. Beckman Coulter Inc. Access Immunoassay Systems: Folate. Ref A142082007.

  25. Milman, N., Bergholt, T., Byg, K. E., et al. (2007). Reference intervals for haematological variables during normal pregnancy and postpartum in 434 healthy Danish women. European Journal of Haematology, 79(1), 39–46.

    Article  PubMed  Google Scholar 

  26. Food Standards Australia and New Zealand. (2008). Mandatory folic acid fortification in Australia. http://www.foodstandards.gov.au/newsroom/factsheets/factsheets2008/mandatoryfolicacidfo3931.cfm. Accessed 2 July 2008.

  27. Bor, M. V., Wulff, A. M., Nexo, E., et al. (2008). Infrequency of low red blood cell (RBC) folate levels despite no folate fortification program: A study based on results from routine requests for RBC folate. Clinical Chemistry and Laboratory Medicine, 46(3), 401–404.

    Article  PubMed  CAS  Google Scholar 

  28. National Institute of Clinical Studies. Evidence-practice gaps report, Vol. 2. Melbourne: NICS2005.

  29. Ball, E. W., & Giles, C. (1964). Folic acid and vitamin B12 levels in pregnancy and their relation to megaloblastic anaemia. Journal of Clinical Pathology, 17, 165–174.

    Article  PubMed  CAS  Google Scholar 

  30. Morkbak, A. L., Hvas, A. M., Milman, N., et al. (2007). Holotranscobalamin remains unchanged during pregnancy. Longitudinal changes of cobalamins and their binding proteins during pregnancy and postpartum. Haematologica, 92(12), 1711–1712.

    Article  PubMed  CAS  Google Scholar 

  31. Hvas, A. M., & Nexo, E. (2006). Diagnosis and treatment of vitamin B12 deficiency–an update. Haematologica, 91(11), 1506–1512.

    PubMed  CAS  Google Scholar 

  32. Monsen, A. L., Refsum, H., Markestad, T., et al. (2003). Cobalamin status and its biochemical markers methylmalonic acid and homocysteine in different age groups from 4 days to 19 years. Clinical Chemistry, 49, 2067–2075.

    Article  PubMed  CAS  Google Scholar 

  33. Sinclair, K. D., Allegrucci, C., Singh, R., et al. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Science USA, 104(49), 19351–19356.

    Article  CAS  Google Scholar 

  34. Hay, G., Johnston, C., Whitelaw, A., et al. (2008). Folate and cobalamin status in relation to breastfeeding and weaning in healthy infants. American Journal of Clinical Nutrition, 88, 105–114.

    PubMed  CAS  Google Scholar 

  35. World Health Organization. (2010). Exclusive breastfeeding.

  36. Cooney, C. A., Dave, A. A., & Wolff, G. L. (2002). Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. Journal of Nutrition, 132(8 Suppl), 2393S–2400S.

    PubMed  CAS  Google Scholar 

  37. Hollingsworth, J. W., Maruoka, S., Boon, K., et al. (2008). In utero supplementation with methyl donors enhances allergic airway disease in mice. Journal of Clinical Investigation, 118, 3462–3469.

    PubMed  CAS  Google Scholar 

  38. Haberg, S. E., London, S. J., Stigum, H., et al. (2009). Folic acid supplements in pregnancy and early childhood respiratory health. Archives of Disease in Childhood, 94, 180–184.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson, J. W., Johnstone, B. M., & Remley, D. T. (1999). Breast-feeding and cognitive development: A meta-analysis. American Journal of Clinical Nutrition, 70, 525–535.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all WATCH Study participants who have generously provided their time, personal information, and blood samples. We thank Trish Engel and Therese Finnegan (Midwives) for their involvement in the recruitment process, and Dr Patrick McElduff for the statistical support he has provided. We also thank Narelle Eddington and Lynn Clark at the Hunter Area Pathology Service for their assistance with the study’s blood samples. CEC is supported by a National Health and Medical Research Council Career Development Award. The WATCH Study has received funding from the University of Newcastle, the Newcastle Permanent Charitable Foundation and the John Hunter Hospital Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis J. Hure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hure, A.J., Collins, C.E. & Smith, R. A Longitudinal Study of Maternal Folate and Vitamin B12 Status in Pregnancy and Postpartum, with the Same Infant Markers at 6 Months of Age. Matern Child Health J 16, 792–801 (2012). https://doi.org/10.1007/s10995-011-0782-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10995-011-0782-0

Keywords

Navigation