Alvarez-Melis, D., & Jaakkola, T. S. (2018). Towards Robust Interpretability with Self-Explaining Neural Networks, arxiv:1806.07538
Andrews, R., & Diederich, J. (1995). Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6), 373–389.
Attenberg, J., Weinberger, K., Smola, Q., Dasgupta, A., Zinkevich, M. (2009). Collaborative email-spam filtering with the hashing-trick. In Proceedings of the 6th conference on email and anti-spam.
Bache, K, Lichman, M. UCI machine learning repository. School Inf. Comput. Sci. Univ. California. http://archive.ics.uci.edu/ml
Brozovsky, L., & Petricek, V. (2007). Recommender system for online dating service. In Proceedings of conference Znalosti, VSB, Ostrava. Czech Republic.
Campbell, D. (1988). Task complexity: a review and analysis. Academy of Management Journal, 13(1), 40–52.
Google Scholar
Cha, M., Mislove, A., & Gummadi, K. P. (2009). A measurement-driven analysis of information propagation in the flickr social network. In Proceedings of the 18th international world wide web conference. https://doi.org/10.1145/1526709.1526806
Chen, D., Fraiberger, S. P., Moakler, R., & Provost, F. (2017). Enhancing transparency and control when drawing data-driven inferences about individuals. Big Data, 5(3), 197–212.
Article
Google Scholar
Chen, W., Zhang, M., Zhang, Y., & Duan, X. (2016). Exploiting meta features for dependency parsing and part-of-speech tagging. Artificial Intelligence, 230, 173–191.
MathSciNet
Article
Google Scholar
Chhatwal, R., Gronvall, P., Huber, N., Keeling, R., Zhang, J., & Zhao, H. (2019) Explainable text classification in legal document review: A case study of explainable predictive coding, CoRR, abs/1904.01721.
Contreras-Pina, C., & Sebastián, A.-R. (2016). An empirical comparison of latent sematic models for applications in industry. Neurocomputing, 179, 176–185.
Article
Google Scholar
Clark, J., & Provost, F. (2015). Dimensionality reduction via matrix factorization for predictive modeling from large, sparse behavioral data. Data Mining and Knowledge Discovery, 33(4), 871–916.
Article
Google Scholar
Cohen, W.W. (1995). Fast effective rule induction. In A. Prieditis & S. Russell (Eds.), Proceedings of the 12th international conference on machine learning (pp. 115–123). Morgan Kaufmann.
Craven, M., & Shavlik, J. (1999). Rule extraction: Where do we go from here? In Proceedings of machine learning research group working paper (pp. 1–6).
De Cnudde, S., Martens, D., Evgeniou, T., & Provost, F. (2020). A benchmarking study of classification techniques for behavioral data. International Journal of Data Science and Analytics, 9, 131–173. https://doi.org/10.1007/s41060-019-00185-1
De Cnudde, S., Moeyersoms, J., Stankova, M., & Martens, D. (2018). What does your Facebook profile reveal about your creditworthiness? Using alternative data for microfinance. Journal of the Operational Research Society, 70(10), 1–10.
Google Scholar
De Cnudde, S., Ramon, Y., Martens, D., & Provost, F. (2019). Deep learning on big. Sparse, Behavioral Data, Big Data, 7(4), 286–307.
Google Scholar
de Fortuny, E. J., & Martens, D. (2015). Active learning-based pedagogical rule extraction. IEEE Transactions on Neural Networks and Learning Systems, 26(11), 2664–2677.
MathSciNet
Article
Google Scholar
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. JMLR, 7(1), 1–30.
MathSciNet
MATH
Google Scholar
Devlin, J., Chang, M. -W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: Human language technologies, Volume 1 (Long and Short Papers) (pp. 4171–4186).
Diederich, J, (2008). Rule extraction from spport vector machines: An introduction. In: Diederich J. (Ed.), Rule extraction from support vector machines. Studies in computational intelligence, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75390-2_1
European Commission White Paper. (2020). On artificial intelligence—A European approach to excellence and trust.
European Union, Counil Directive 2004/113/EC, art.3; European Union, Council Directive 2004/43/EC of 29 June 2000 implementing the principle of equal treatment between persons irrespective of racial or ethnic origin, OJ L 180 (19 July 2000), art.3.
Fletcher, S., & Islam, M. Z. (2018). Comparing sets of patterns with the Jaccard index. Australasian Journal of Information Systems. https://doi.org/10.3127/ajis.v22i0.1538
Freitas, A. A. (2013). Comprehensible classification models: A position paper. ACM SIGKDD Explorations, 15(1), 1–10. https://doi.org/10.1145/2594473.2594475.
Article
Google Scholar
Gigerenzer, G., & Goldstein, D. G. (2016). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103(4), 650–669.
Article
Google Scholar
Harper, F. M., & Konstan, J. A. (2015). The MovieLens datasets: History and context. ACM Transactions on Interactive Intelligent Systems. https://doi.org/10.1145/2827872
Hauser, J. R., Toubia, O., Evgeniou, T., Befurt, R., & Silinskaia, D. (2009). Disjunctions of conjunctions, cognitive simplicity and consideration sets. Journal of Marketing Research.
Hsu, C.-N., Chung, H.-H., & Huang, H.-S. (2004). Mining skewed and sparse transaction data for personalized shopping recommendation. Machine Learning, 57(1), 35–59.
Article
Google Scholar
Husbands, P., Simon, H., & Ding, C. (2001). On the use of the singular value decomposition for text retrieval. Computational Information Retrieval, 5, 145–156.
MATH
Google Scholar
Huysmans, J., Baesens, B., & Vanthienen, J. (2006). Using rule extraction to improve the comprehensibility of predictive models. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.961358.
Article
Google Scholar
Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., & Baesens, B. (2011). An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decision Support Systems, 51(1), 141–154.
Article
Google Scholar
Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features (cit. on pp. 19,104,108,123,132). Springer.
Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification, arXiv preprint arXiv:1607.01759
Junqué de Fortuny, E., Martens, D., & Provost, F. (2013). Predictive modeling with big data: Is bigger really better? Big Data, 1(4), 215–226.
Article
Google Scholar
Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., & Sayres, R. (2018). Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), ICML 2018. arXiv:1711.11279
Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. National Academy of Sciences, 110(15), 5802–5805.
Article
Google Scholar
Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review of classification and combining techniques. Artificial Intelligence Review, 26, 159–190.
Article
Google Scholar
Kulkarni, V., Kern, M. L., Stillwell, D., Kosinski, M., & Matz, S. (2018). Latent human traits in the language of social media: An open-vocabulary approach. PLoS One. https://doi.org/10.1371/journal.pone.0201703.
Article
Google Scholar
Lang, K. Newsweeder: Learning to filter netnews. In Proceedings of the twelfth international conference on machine learning (pp. 331–339
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791. https://doi.org/10.1038/44565.
Article
MATH
Google Scholar
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in neural information processing systems (pp. 556–562).
Lee, K., Sood, A., & Craven, M. (2019). Understanding learned models by identifying important features at the right resolution. arXiv:1811.07279
Lessman, S., Baesens, B., Seow, H. V., & Thomas, L. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. EJOR, 247(1), 124–136. https://doi.org/10.1016/j.ejor.2015.05.030.
Article
MATH
Google Scholar
Lundberg, S. M., Lee, S. -I., & C. (2019). Consistent feature attribution for tree ensembles. arXiv:1706.06060
Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. EJOR, 183, 1466–1476.
Article
Google Scholar
Martens, D., Baesens, B. B., & Van Gestel, T. (2009). Decompositional rule extraction from support vector machines by active learning. IEEE Transactions on Knowledge and Data Engineering, 21(2), 178–191. https://doi.org/10.1109/TKDE.2008.131.
Article
Google Scholar
Martens, D., Huysmans, J., Setiono, R., Vanthienen, J., & Baesens, B. (2008). Rule extraction from support vector machines: An overview of issues and application in credit scoring. Studies in Computational Intelligence (SCI), 80, 33–63.
MATH
Google Scholar
Martens, D., & Provost, F. (2014). Explaining data-driven document classifications. MIS Quarterly, 38(1), 73–99.
Article
Google Scholar
Martens, D., Provost, F., Clark, J., & Junqué de Fortuny, E. (2016). Mining massive fine-grained behavior data to improve predictive analytics. MIS Quarterly, 40(4), 869–888.
Article
Google Scholar
Matz, S. C., Appel, R., & Kosinski, M. (2020). Privacy in the age of psychological targeting. Current Opinion in Psychology, 31, 116–121. https://doi.org/10.1016/j.copsyc.2019.08.010.
Article
Google Scholar
Matz, S. C., & Netzer, O. (2017). Using big data as a window into consumer psychology. Current Opinion in Behavioral Science, 18, 7–12.
Article
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111–3119).
Moeyersoms, J., d’Alessandro, B., Provost, F., & Martens, D. (2016). Explaining classification models built on high-dimensional sparse data. In Workshop on human interpretability, machine learning: WHI 2016, June 23, 2016, New York, USA/Kim, Been [edit.] (pp. 36–40).
Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Interpretable machine learning: Definitions, methods, and applications. arXiv:1901.04592
O’Callaghan, D., Greene, D., Carthy, J., & Cunningham, P. (2015). An analysis of the coherence of descriptors in topic modeling. Expert Systems with Applications, 42, 5645–5657.
Article
Google Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
MathSciNet
MATH
Google Scholar
Praet, S., Van Aelst, P., & Martens, D. (2018). I like, therefore I am Predictive modeling to gain insights in political preference in a multi-party system, Research paper, University of Antwerp, Faculty of Business and Economics (pp. 1–34).
Quinlan, J. R. (1993). C4.5 programs for machine learning. Morgan Kaufmann Publishers Inc.
Ramon, Y., Martens, D., Provost, F., & Evgeniou, T. (2020). A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C, Adv Data Anal Classif. https://doi.org/10.1007/s11634-020-00418-3
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135–1144).
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. arXiv:1811.10154
Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.
MathSciNet
Article
Google Scholar
Sommer, E. (1995). An approach to quantifying the quality of induced theories. In C. Nedellec (Ed.), Proceedings of the IJCAI workshop on machine learning and comprehensibility.
Sushil, M., Suster, S., & Daelemans, W. (2018). Rule induction for global explanation of trained models. arXiv:1808.09744
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.
Article
Google Scholar
Tobback, E., & Martens, D. (2019). Retail credit scoring using fine-grained payment data. Journal of the Royal Statistical Society, 182(4), 1227–1246. https://doi.org/10.1111/rssa.12469.
MathSciNet
Article
Google Scholar
Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.
Article
Google Scholar
Turney, P. (1995). Technical note: Bias and the quantification of stability. Machine Learning, 20, 23–33.
Google Scholar
US Federal Trade Commission, Your Equal Credit Opportunity Rights, Consumer Information (2003).
Van Assche, A., & Blockeel, H. (2007). Seeing the forest through the trees: Learning a comprehensible model from an ensemble. In: Kok J.N., Koronacki J., Mantaras R.L.., Matwin S., Mladenič D., Skowron A. (Eds.), Machine Learning: ECML 2007. ECML 2007. Lecture Notes in Computer Science, vol 4701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74958-5_39
Vanhoeyveld, J., Martens, D., & Peeters, B. (2019). Customs fraud detection: Assessing the value of behavioural and high-cardinality data under the imbalanced learning issue. Pattern analysis and applications, ISSN 1433–7541 (pp. 1–21). Springer.
Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research, 218(1), 211–229.
Article
Google Scholar
Verbeke, W., Martens, D., Mues, C., & Baesens, B. (2011). Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Systems with Applications, 38, 2354–2364.
Article
Google Scholar
Wang, Y. X., & Zhang, Y. J. (2012). Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on Knowledge and Data Engineering, 25(6), 1336–1353.
MathSciNet
Article
Google Scholar
Wang, C., & Blei, D. M. (2011). Collaborative topic modeling for recommending scientific articles. Association for Computing Machinery. https://doi.org/10.1145/2020408.2020480
Wei, Y., Chang, M. C., Ting, T., Lim, S. N., & Lyu, S. (2018). Explain Black-box Image Classifications Using Superpixel-based Interpretation. In IEEE, 24th international conference on pattern recognition (ICPR).
Wood, R. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37, 60–82.
Article
Google Scholar