Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Machine Learning
  3. Article
Nearest neighbors distance ratio open-set classifier
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Deep Open Set Recognition Using Dynamic Intra-class Splitting

11 March 2020

Patrick Schlachter, Yiwen Liao & Bin Yang

Norm ball classifier for one-class classification

18 February 2021

Sehwa Kim, Kyungsik Lee & Young-Seon Jeong

Candidate-Label Learning: A Generalization of Ordinary-Label Learning and Complementary-Label Learning

21 May 2021

Yasuhiro Katsura & Masato Uchida

Open set task augmentation facilitates generalization of deep neural networks trained on small data sets

09 December 2021

Wadhah Zai El Amri, Felix Reinhart & Wolfram Schenck

Non-parametric Nearest Neighbor Classification Based on Global Variance Difference

02 March 2023

Shaobo Deng, Lei Wang, … Lei Wang

Binary classification with ambiguous training data

03 November 2020

Naoya Otani, Yosuke Otsubo, … Masashi Sugiyama

A Practical Method Based on Bayes Boundary-Ness for Optimal Classifier Parameter Status Selection

11 May 2019

David Ha, Yuya Tomotoshi, … Miho Ohsaki

A Novel Approach for Semi-supervised Learning: Incremental Parallel Training with Cross-Validation (IPT-CV)

23 November 2022

Havva Esin Ünal & Selma Ayşe Özel

Robust optimal classification trees under noisy labels

05 October 2021

Victor Blanco, Alberto Japón & Justo Puerto

Download PDF
  • Published: 15 December 2016

Nearest neighbors distance ratio open-set classifier

  • Pedro R. Mendes Júnior  ORCID: orcid.org/0000-0001-8086-018X1,
  • Roberto M. de Souza  ORCID: orcid.org/0000-0001-7824-52172,
  • Rafael de O. Werneck  ORCID: orcid.org/0000-0002-8217-72501,
  • Bernardo V. Stein  ORCID: orcid.org/0000-0001-8620-97851,
  • Daniel V. Pazinato  ORCID: orcid.org/0000-0003-1824-95281,
  • Waldir R. de Almeida  ORCID: orcid.org/0000-0002-5848-55601,
  • Otávio A. B. Penatti  ORCID: orcid.org/0000-0002-0171-44301,3,
  • Ricardo da S. Torres  ORCID: orcid.org/0000-0001-9772-263X1 &
  • …
  • Anderson Rocha  ORCID: orcid.org/0000-0002-4236-82121 

Machine Learning volume 106, pages 359–386 (2017)Cite this article

  • 3393 Accesses

  • 86 Citations

  • 3 Altmetric

  • Metrics details

Abstract

In this paper, we propose a novel multiclass classifier for the open-set recognition scenario. This scenario is the one in which there are no a priori training samples for some classes that might appear during testing. Usually, many applications are inherently open set. Consequently, successful closed-set solutions in the literature are not always suitable for real-world recognition problems. The proposed open-set classifier extends upon the Nearest-Neighbor (NN) classifier. Nearest neighbors are simple, parameter independent, multiclass, and widely used for closed-set problems. The proposed Open-Set NN (OSNN) method incorporates the ability of recognizing samples belonging to classes that are unknown at training time, being suitable for open-set recognition. In addition, we explore evaluation measures for open-set problems, properly measuring the resilience of methods to unknown classes during testing. For validation, we consider large freely-available benchmarks with different open-set recognition regimes and demonstrate that the proposed OSNN significantly outperforms their counterparts in the literature.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Bartlett, P. L., & Wegkamp, M. H. (2008). Classification with a reject option using a hinge loss. Journal of Machine Learning Research, 9, 1823–1840.

    MathSciNet  MATH  Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning (1st ed.). New York: Information Science and Statistics, Springer.

    MATH  Google Scholar 

  • Boureau, Y. L., Bach, F., LeCun, Y., & Ponce, J. (2010). Learning mid-level features for recognition. In International conference on computer vision and pattern recognition (pp. 2559–2566). San Francisco, CA: IEEE Press.

  • Cevikalp, H., & Triggs, B. (2012). Efficient object detection using cascades of nearest convex model classifiers. In International conference on computer vision and pattern recognition (pp. 3138–3145). Providence, RI: IEEE Press.

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. Transactions on Intelligent Systems and Technology, 2(3), 27:1–27:27.

    Google Scholar 

  • Chen, P. H., Lin, C. J., & Schölkopf, B. (2005). A tutorial on nu-support vector machines. Applied Stochastic Models in Business and Industry, 21(2), 111–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Chew, S. W., Lucey, S., Lucey, P., Sridharan, S., & Cohn, J. F. (2012). Improved facial expression recognition via uni-hyperplane classification. In International conference on computer vision and pattern recognition (pp. 2554–2561). Providence, RI: IEEE Press.

  • Chow, C. K. (1970). On optimum recognition error and reject tradeoff. Transactions on Information Theory, 16(1), 41–46.

    Article  MATH  Google Scholar 

  • Costa, F.O., Eckmann, M., Scheirer, W. J., & Rocha, A. (2012). Open set source camera attribution. In Conference on graphics, patterns, and images (pp. 71–78). Ouro Preto: IEEE Press.

  • Costa, F. O., Silva, E., Eckmann, M., Scheirer, W. J., & Rocha, A. (2014). Open set source camera attribution and device linking. Pattern Recognition Letters, 39, 92–101.

    Article  Google Scholar 

  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

    MathSciNet  MATH  Google Scholar 

  • de Haan, L., & Ferreira, A. (2007). Extreme value theory: An introduction (1st ed.), Springer Series in Operations Research and Financial Engineering. New York: Springer.

  • Dubuisson, B., & Masson, M. (1993). A statistical decision rule with incomplete knowledge about classes. Pattern Recognition, 26(1), 155–165.

    Article  Google Scholar 

  • Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style adaptive classifiers. Machine Learning, 6(2), 161–182.

    Google Scholar 

  • Fukunaga, K. (1990). Hypothesis testing. In Introduction to statistical pattern recognition, Chapter 3, Computer Science and Scientific Computing Series, 2nd ed. (pp. 51–123). London: Academic Press.

  • Geusebroek, J. M., Burghouts, G. J., & Smeulders, A. W. M. (2005). The Amsterdam library of object images. International Journal of Computer Vision, 61(1), 103–112.

    Article  Google Scholar 

  • Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. Tech. rep., California Institute of Technology.

  • Heflin, B., Scheirer, W. J., & Boult, T. E. (2012). Detecting and classifying scars, marks, and tattoos found in the wild. In International conference on biometrics: Theory, applications and systems (pp. 31–38). Arlington, VA: IEEE Press.

  • Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85–126.

    Article  MATH  Google Scholar 

  • Jayadeva, K. R., & Chandra, S. (2007). Twin support vector machines for pattern classification. Transactions on Pattern Analysis and Machine Intelligence, 29(5), 905–910.

    Article  MATH  Google Scholar 

  • Jin, H., Liu, Q., & Lu, H. (2004). Face detection using one-class-based support vectors. In International conference on automatic face and gesture recognition (pp. 457–462). Seoul: IEEE Press.

  • Kadous, M. W. (2002). Temporal classification: Extending the classification paradigm to multivariate time series. PhD Thesis, The University of New South Wales, New South Wales, Australia.

  • Kuncheva, L. I., & Hadjitodorov, S. T. (2004) Using diversity in cluster ensembles. In International conference on systems, man and cybernetics (Vol. 2, pp. 1214–1219). The Hague: IEEE Press.

  • Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In International conference on computer vision and pattern recognition (Vol. 2, pp. 2169–2178). New York, NY: IEEE Press.

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Malisiewicz, T., Gupta, A., & Efros, A. A. (2011). Ensemble of exemplar-svms for object detection and beyond. In International Conference on Computer Vision (pp. 89–96). Barcelona: IEEE Press.

  • Manevitz, L. M., & Yousef, M. (2002). One-class svms for document classification. Journal of Machine Learning Research, 2, 139–154.

    MATH  Google Scholar 

  • Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural and statistical classification, Ellis Horwood Series in Artificial Intelligence. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Muzzolini, R., Yang, Y. H., & Pierson, R. (1998). Classifier design with incomplete knowledge. Pattern Recognition, 31(4), 345–369.

    Article  Google Scholar 

  • Nist, D., & Stew, H. (2006). Scalable recognition with a vocabulary tree. In International conference on computer vision and pattern recognition (Vol. 2, pp. 2162–2168). New York, NY: IEEE Press.

  • Papa, J. P., Falcão, A. X., Miranda, P. A. V., Suzuki, C. T. N., & Mascarenhas, N. D. A. (2007). Design of robust pattern classifiers based on optimum-path forests. In International symposium on mathematical morphology, MCT/INPE, Rio de Janeiro (Vol. 1, pp. 337–348).

  • Papa, J. P., Falcão, A. X., & Suzuki, C. T. N. (2009). Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology, 19(2), 120–131.

    Article  Google Scholar 

  • Phillips, P. J., Grother, P., & Micheals, R. (2011). Evaluation methods in face recognition. In S. Z. Li & A. K. Jain (Eds.), Handbook of face recognition (pp. 329–348). New York: Springer.

    Google Scholar 

  • Pietraszek, T. (2005). Optimizing abstaining classifiers using ROC analysis. In International conference on machine learning (pp. 665–672). Bonn: ACM Press.

  • Pritsos, D. A., & Stamatatos, E. (2013). Open-set classification for automated genre identification. In P. Serdyukov, P. Braslavski, S. O. Kuznetsov, J. Kamps, S. Rüger, E. Agichtein, I. Segalovich, & E. Yilmaz (Eds.), Advances in information retrieval, Lecture Notes in Computer Science (Vol. 7814, pp. 207–217). Berlin: Springer.

    Chapter  Google Scholar 

  • Rocha, A., & Goldenstein, S. (2009). Multi-class from binary: Divide to conquer. In International conference on computer vision theory and applications (pp. 1–8). Lisboa: Springer.

  • Rocha, A., & Goldenstein, S. (2014). Multiclass from binary: Expanding one-vs-all, one-vs-one and ECOC-based approaches. Transactions on Neural Networks and Learning Systems, 25(2), 289–302.

    Article  Google Scholar 

  • Scheirer, W. J., Rocha, A., Micheals, R. J., & Boult, T. E. (2011). Meta-recognition: The theory and practice of recognition score analysis. Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1689–1695.

    Article  Google Scholar 

  • Scheirer, W. J., Rocha, A. R., Parris, J., & Boult, T. E. (2012). Learning for meta-recognition. Transactions on Information Forensics and Security, 7(4), 1214–1224.

    Article  Google Scholar 

  • Scheirer, W. J., Rocha, A. R., Sapkota, A., & Boult, T. E. (2013). Towards open set recognition. Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1757–1772.

    Article  Google Scholar 

  • Scheirer, W. J., Jain, L. P., & Boult, T. E. (2014). Probability models for open set recognition. Transactions on Pattern Analysis and Machine Intelligence, 36(11), 2317–2324.

    Article  Google Scholar 

  • Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (1999). Estimating the support of a high-dimensional distribution. Tech. rep., Microsoft Research, Redmond, WA.

  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437.

    Article  Google Scholar 

  • Stehling, R. O., Nascimento, M. A., & Falcão, A. X. (2002). A compact and efficient image retrieval approach based on border/interior pixel classification. International conference on information and knowledge management (pp. 102–109). McLean, VA: ACM Press.

    Google Scholar 

  • van Gemert, J. C., Veenman, C. J., Smeulders, A. W. M., & Geusebroek, J. M. (2010). Visual word ambiguity. Transactions on Pattern Analysis and Machine Intelligence, 32(7), 1271–1283.

    Article  Google Scholar 

  • Wu, M., & Ye, J. (2009). A small sphere and large margin approach for novelty detection using training data with outliers. Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2088–2092.

    Article  Google Scholar 

  • Zhou, X. S., & Huang, T. S. (2003). Relevance feedback in image retrieval: A comprehensive review. Multimedia Systems, 8(6), 536–544.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. RECOD Lab., Institute of Computing (IC), University of Campinas (UNICAMP), Av. Albert Einstein, 1251, Campinas, SP, 13083-852, Brazil

    Pedro R. Mendes Júnior, Rafael de O. Werneck, Bernardo V. Stein, Daniel V. Pazinato, Waldir R. de Almeida, Otávio A. B. Penatti, Ricardo da S. Torres & Anderson Rocha

  2. Faculty of Electrical Engineering and Computing (FEEC), University of Campinas (UNICAMP), Av. Albert Einstein, 400, Campinas, SP, 13083-852, Brazil

    Roberto M. de Souza

  3. SAMSUNG Research Institute, Advanced Technologies Group, Av. Cambacica, 1200, Bloco 1, Campinas, SP, 13097-160, Brazil

    Otávio A. B. Penatti

Authors
  1. Pedro R. Mendes Júnior
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Roberto M. de Souza
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Rafael de O. Werneck
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Bernardo V. Stein
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Daniel V. Pazinato
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Waldir R. de Almeida
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Otávio A. B. Penatti
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Ricardo da S. Torres
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Anderson Rocha
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pedro R. Mendes Júnior.

Additional information

Editor: Hendrik Blockeel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendes Júnior, P.R., de Souza, R.M., Werneck, R.d.O. et al. Nearest neighbors distance ratio open-set classifier. Mach Learn 106, 359–386 (2017). https://doi.org/10.1007/s10994-016-5610-8

Download citation

  • Received: 18 October 2015

  • Accepted: 09 November 2016

  • Published: 15 December 2016

  • Issue Date: March 2017

  • DOI: https://doi.org/10.1007/s10994-016-5610-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Open-set recognition
  • Nearest neighbor classifier
  • Open-set nearest-neighbor classifier
  • Nearest neighbors distance ratio
  • Open-set evaluation measures
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.134.157

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.